Type Function PriorityDequeue [src]

Alias for std.priority_dequeue.PriorityDequeue

Priority Dequeue for storing generic data. Initialize with init. Provide compareFn that returns Order.lt when its second argument should get min-popped before its third argument, Order.eq if the arguments are of equal priority, or Order.gt if the third argument should be min-popped second. Popping the max element works in reverse. For example, to make popMin return the smallest number, provide fn lessThan(context: void, a: T, b: T) Order { _ = context; return std.math.order(a, b); }

Prototype

pub fn PriorityDequeue(comptime T: type, comptime Context: type, comptime compareFn: fn (context: Context, a: T, b: T) Order) type

Parameters

T: typeContext: typecompareFn: fn (context: Context, a: T, b: T) Order

Source

pub fn PriorityDequeue(comptime T: type, comptime Context: type, comptime compareFn: fn (context: Context, a: T, b: T) Order) type { return struct { const Self = @This(); items: []T, len: usize, allocator: Allocator, context: Context, /// Initialize and return a new priority dequeue. pub fn init(allocator: Allocator, context: Context) Self { return Self{ .items = &[_]T{}, .len = 0, .allocator = allocator, .context = context, }; } /// Free memory used by the dequeue. pub fn deinit(self: Self) void { self.allocator.free(self.items); } /// Insert a new element, maintaining priority. pub fn add(self: *Self, elem: T) !void { try self.ensureUnusedCapacity(1); addUnchecked(self, elem); } /// Add each element in `items` to the dequeue. pub fn addSlice(self: *Self, items: []const T) !void { try self.ensureUnusedCapacity(items.len); for (items) |e| { self.addUnchecked(e); } } fn addUnchecked(self: *Self, elem: T) void { self.items[self.len] = elem; if (self.len > 0) { const start = self.getStartForSiftUp(elem, self.len); self.siftUp(start); } self.len += 1; } fn isMinLayer(index: usize) bool { // In the min-max heap structure: // The first element is on a min layer; // next two are on a max layer; // next four are on a min layer, and so on. return 1 == @clz(index +% 1) & 1; } fn nextIsMinLayer(self: Self) bool { return isMinLayer(self.len); } const StartIndexAndLayer = struct { index: usize, min_layer: bool, }; fn getStartForSiftUp(self: Self, child: T, index: usize) StartIndexAndLayer { const child_index = index; const parent_index = parentIndex(child_index); const parent = self.items[parent_index]; const min_layer = self.nextIsMinLayer(); const order = compareFn(self.context, child, parent); if ((min_layer and order == .gt) or (!min_layer and order == .lt)) { // We must swap the item with it's parent if it is on the "wrong" layer self.items[parent_index] = child; self.items[child_index] = parent; return .{ .index = parent_index, .min_layer = !min_layer, }; } else { return .{ .index = child_index, .min_layer = min_layer, }; } } fn siftUp(self: *Self, start: StartIndexAndLayer) void { if (start.min_layer) { doSiftUp(self, start.index, .lt); } else { doSiftUp(self, start.index, .gt); } } fn doSiftUp(self: *Self, start_index: usize, target_order: Order) void { var child_index = start_index; while (child_index > 2) { const grandparent_index = grandparentIndex(child_index); const child = self.items[child_index]; const grandparent = self.items[grandparent_index]; // If the grandparent is already better or equal, we have gone as far as we need to if (compareFn(self.context, child, grandparent) != target_order) break; // Otherwise swap the item with it's grandparent self.items[grandparent_index] = child; self.items[child_index] = grandparent; child_index = grandparent_index; } } /// Look at the smallest element in the dequeue. Returns /// `null` if empty. pub fn peekMin(self: *Self) ?T { return if (self.len > 0) self.items[0] else null; } /// Look at the largest element in the dequeue. Returns /// `null` if empty. pub fn peekMax(self: *Self) ?T { if (self.len == 0) return null; if (self.len == 1) return self.items[0]; if (self.len == 2) return self.items[1]; return self.bestItemAtIndices(1, 2, .gt).item; } fn maxIndex(self: Self) ?usize { if (self.len == 0) return null; if (self.len == 1) return 0; if (self.len == 2) return 1; return self.bestItemAtIndices(1, 2, .gt).index; } /// Pop the smallest element from the dequeue. Returns /// `null` if empty. pub fn removeMinOrNull(self: *Self) ?T { return if (self.len > 0) self.removeMin() else null; } /// Remove and return the smallest element from the /// dequeue. pub fn removeMin(self: *Self) T { return self.removeIndex(0); } /// Pop the largest element from the dequeue. Returns /// `null` if empty. pub fn removeMaxOrNull(self: *Self) ?T { return if (self.len > 0) self.removeMax() else null; } /// Remove and return the largest element from the /// dequeue. pub fn removeMax(self: *Self) T { return self.removeIndex(self.maxIndex().?); } /// Remove and return element at index. Indices are in the /// same order as iterator, which is not necessarily priority /// order. pub fn removeIndex(self: *Self, index: usize) T { assert(self.len > index); const item = self.items[index]; const last = self.items[self.len - 1]; self.items[index] = last; self.len -= 1; siftDown(self, index); return item; } fn siftDown(self: *Self, index: usize) void { if (isMinLayer(index)) { self.doSiftDown(index, .lt); } else { self.doSiftDown(index, .gt); } } fn doSiftDown(self: *Self, start_index: usize, target_order: Order) void { var index = start_index; const half = self.len >> 1; while (true) { const first_grandchild_index = firstGrandchildIndex(index); const last_grandchild_index = first_grandchild_index + 3; const elem = self.items[index]; if (last_grandchild_index < self.len) { // All four grandchildren exist const index2 = first_grandchild_index + 1; const index3 = index2 + 1; // Find the best grandchild const best_left = self.bestItemAtIndices(first_grandchild_index, index2, target_order); const best_right = self.bestItemAtIndices(index3, last_grandchild_index, target_order); const best_grandchild = self.bestItem(best_left, best_right, target_order); // If the item is better than or equal to its best grandchild, we are done if (compareFn(self.context, best_grandchild.item, elem) != target_order) return; // Otherwise, swap them self.items[best_grandchild.index] = elem; self.items[index] = best_grandchild.item; index = best_grandchild.index; // We might need to swap the element with it's parent self.swapIfParentIsBetter(elem, index, target_order); } else { // The children or grandchildren are the last layer const first_child_index = firstChildIndex(index); if (first_child_index >= self.len) return; const best_descendent = self.bestDescendent(first_child_index, first_grandchild_index, target_order); // If the item is better than or equal to its best descendant, we are done if (compareFn(self.context, best_descendent.item, elem) != target_order) return; // Otherwise swap them self.items[best_descendent.index] = elem; self.items[index] = best_descendent.item; index = best_descendent.index; // If we didn't swap a grandchild, we are done if (index < first_grandchild_index) return; // We might need to swap the element with it's parent self.swapIfParentIsBetter(elem, index, target_order); return; } // If we are now in the last layer, we are done if (index >= half) return; } } fn swapIfParentIsBetter(self: *Self, child: T, child_index: usize, target_order: Order) void { const parent_index = parentIndex(child_index); const parent = self.items[parent_index]; if (compareFn(self.context, parent, child) == target_order) { self.items[parent_index] = child; self.items[child_index] = parent; } } const ItemAndIndex = struct { item: T, index: usize, }; fn getItem(self: Self, index: usize) ItemAndIndex { return .{ .item = self.items[index], .index = index, }; } fn bestItem(self: Self, item1: ItemAndIndex, item2: ItemAndIndex, target_order: Order) ItemAndIndex { if (compareFn(self.context, item1.item, item2.item) == target_order) { return item1; } else { return item2; } } fn bestItemAtIndices(self: Self, index1: usize, index2: usize, target_order: Order) ItemAndIndex { const item1 = self.getItem(index1); const item2 = self.getItem(index2); return self.bestItem(item1, item2, target_order); } fn bestDescendent(self: Self, first_child_index: usize, first_grandchild_index: usize, target_order: Order) ItemAndIndex { const second_child_index = first_child_index + 1; if (first_grandchild_index >= self.len) { // No grandchildren, find the best child (second may not exist) if (second_child_index >= self.len) { return .{ .item = self.items[first_child_index], .index = first_child_index, }; } else { return self.bestItemAtIndices(first_child_index, second_child_index, target_order); } } const second_grandchild_index = first_grandchild_index + 1; if (second_grandchild_index >= self.len) { // One grandchild, so we know there is a second child. Compare first grandchild and second child return self.bestItemAtIndices(first_grandchild_index, second_child_index, target_order); } const best_left_grandchild_index = self.bestItemAtIndices(first_grandchild_index, second_grandchild_index, target_order).index; const third_grandchild_index = second_grandchild_index + 1; if (third_grandchild_index >= self.len) { // Two grandchildren, and we know the best. Compare this to second child. return self.bestItemAtIndices(best_left_grandchild_index, second_child_index, target_order); } else { // Three grandchildren, compare the min of the first two with the third return self.bestItemAtIndices(best_left_grandchild_index, third_grandchild_index, target_order); } } /// Return the number of elements remaining in the dequeue pub fn count(self: Self) usize { return self.len; } /// Return the number of elements that can be added to the /// dequeue before more memory is allocated. pub fn capacity(self: Self) usize { return self.items.len; } /// Dequeue takes ownership of the passed in slice. The slice must have been /// allocated with `allocator`. /// De-initialize with `deinit`. pub fn fromOwnedSlice(allocator: Allocator, items: []T, context: Context) Self { var queue = Self{ .items = items, .len = items.len, .allocator = allocator, .context = context, }; if (queue.len <= 1) return queue; const half = (queue.len >> 1) - 1; var i: usize = 0; while (i <= half) : (i += 1) { const index = half - i; queue.siftDown(index); } return queue; } /// Ensure that the dequeue can fit at least `new_capacity` items. pub fn ensureTotalCapacity(self: *Self, new_capacity: usize) !void { var better_capacity = self.capacity(); if (better_capacity >= new_capacity) return; while (true) { better_capacity += better_capacity / 2 + 8; if (better_capacity >= new_capacity) break; } self.items = try self.allocator.realloc(self.items, better_capacity); } /// Ensure that the dequeue can fit at least `additional_count` **more** items. pub fn ensureUnusedCapacity(self: *Self, additional_count: usize) !void { return self.ensureTotalCapacity(self.len + additional_count); } /// Reduce allocated capacity to `new_len`. pub fn shrinkAndFree(self: *Self, new_len: usize) void { assert(new_len <= self.items.len); // Cannot shrink to smaller than the current queue size without invalidating the heap property assert(new_len >= self.len); self.items = self.allocator.realloc(self.items[0..], new_len) catch |e| switch (e) { error.OutOfMemory => { // no problem, capacity is still correct then. self.items.len = new_len; return; }, }; } pub fn update(self: *Self, elem: T, new_elem: T) !void { const old_index = blk: { var idx: usize = 0; while (idx < self.len) : (idx += 1) { const item = self.items[idx]; if (compareFn(self.context, item, elem) == .eq) break :blk idx; } return error.ElementNotFound; }; _ = self.removeIndex(old_index); self.addUnchecked(new_elem); } pub const Iterator = struct { queue: *PriorityDequeue(T, Context, compareFn), count: usize, pub fn next(it: *Iterator) ?T { if (it.count >= it.queue.len) return null; const out = it.count; it.count += 1; return it.queue.items[out]; } pub fn reset(it: *Iterator) void { it.count = 0; } }; /// Return an iterator that walks the queue without consuming /// it. The iteration order may differ from the priority order. /// Invalidated if the queue is modified. pub fn iterator(self: *Self) Iterator { return Iterator{ .queue = self, .count = 0, }; } fn dump(self: *Self) void { const print = std.debug.print; print("{{ ", .{}); print("items: ", .{}); for (self.items, 0..) |e, i| { if (i >= self.len) break; print("{}, ", .{e}); } print("array: ", .{}); for (self.items) |e| { print("{}, ", .{e}); } print("len: {} ", .{self.len}); print("capacity: {}", .{self.capacity()}); print(" }}\n", .{}); } fn parentIndex(index: usize) usize { return (index - 1) >> 1; } fn grandparentIndex(index: usize) usize { return parentIndex(parentIndex(index)); } fn firstChildIndex(index: usize) usize { return (index << 1) + 1; } fn firstGrandchildIndex(index: usize) usize { return firstChildIndex(firstChildIndex(index)); } }; }