Type Function Treap [src]

Alias for std.treap.Treap

Prototype

pub fn Treap(comptime Key: type, comptime compareFn: anytype) type

Parameters

Key: type

Source

pub fn Treap(comptime Key: type, comptime compareFn: anytype) type { return struct { const Self = @This(); // Allow for compareFn to be fn (anytype, anytype) anytype // which allows the convenient use of std.math.order. fn compare(a: Key, b: Key) Order { return compareFn(a, b); } root: ?*Node = null, prng: Prng = .{}, /// A customized pseudo random number generator for the treap. /// This just helps reducing the memory size of the treap itself /// as std.Random.DefaultPrng requires larger state (while producing better entropy for randomness to be fair). const Prng = struct { xorshift: usize = 0, fn random(self: *Prng, seed: usize) usize { // Lazily seed the prng state if (self.xorshift == 0) { self.xorshift = seed; } // Since we're using usize, decide the shifts by the integer's bit width. const shifts = switch (@bitSizeOf(usize)) { 64 => .{ 13, 7, 17 }, 32 => .{ 13, 17, 5 }, 16 => .{ 7, 9, 8 }, else => @compileError("platform not supported"), }; self.xorshift ^= self.xorshift >> shifts[0]; self.xorshift ^= self.xorshift << shifts[1]; self.xorshift ^= self.xorshift >> shifts[2]; assert(self.xorshift != 0); return self.xorshift; } }; /// A Node represents an item or point in the treap with a uniquely associated key. pub const Node = struct { key: Key, priority: usize, parent: ?*Node, children: [2]?*Node, pub fn next(node: *Node) ?*Node { return nextOnDirection(node, 1); } pub fn prev(node: *Node) ?*Node { return nextOnDirection(node, 0); } }; fn extremeInSubtreeOnDirection(node: *Node, direction: u1) *Node { var cur = node; while (cur.children[direction]) |next| cur = next; return cur; } fn nextOnDirection(node: *Node, direction: u1) ?*Node { if (node.children[direction]) |child| { return extremeInSubtreeOnDirection(child, direction ^ 1); } var cur = node; // Traversing upward until we find `parent` to `cur` is NOT on // `direction`, or equivalently, `cur` to `parent` IS on // `direction` thus `parent` is the next. while (true) { if (cur.parent) |parent| { // If `parent -> node` is NOT on `direction`, then // `node -> parent` IS on `direction` if (parent.children[direction] != cur) return parent; cur = parent; } else { return null; } } } /// Returns the smallest Node by key in the treap if there is one. /// Use `getEntryForExisting()` to replace/remove this Node from the treap. pub fn getMin(self: Self) ?*Node { if (self.root) |root| return extremeInSubtreeOnDirection(root, 0); return null; } /// Returns the largest Node by key in the treap if there is one. /// Use `getEntryForExisting()` to replace/remove this Node from the treap. pub fn getMax(self: Self) ?*Node { if (self.root) |root| return extremeInSubtreeOnDirection(root, 1); return null; } /// Lookup the Entry for the given key in the treap. /// The Entry act's as a slot in the treap to insert/replace/remove the node associated with the key. pub fn getEntryFor(self: *Self, key: Key) Entry { var parent: ?*Node = undefined; const node = self.find(key, &parent); return Entry{ .key = key, .treap = self, .node = node, .context = .{ .inserted_under = parent }, }; } /// Get an entry for a Node that currently exists in the treap. /// It is undefined behavior if the Node is not currently inserted in the treap. /// The Entry act's as a slot in the treap to insert/replace/remove the node associated with the key. pub fn getEntryForExisting(self: *Self, node: *Node) Entry { assert(node.priority != 0); return Entry{ .key = node.key, .treap = self, .node = node, .context = .{ .inserted_under = node.parent }, }; } /// An Entry represents a slot in the treap associated with a given key. pub const Entry = struct { /// The associated key for this entry. key: Key, /// A reference to the treap this entry is apart of. treap: *Self, /// The current node at this entry. node: ?*Node, /// The current state of the entry. context: union(enum) { /// A find() was called for this entry and the position in the treap is known. inserted_under: ?*Node, /// The entry's node was removed from the treap and a lookup must occur again for modification. removed, }, /// Update's the Node at this Entry in the treap with the new node (null for deleting). `new_node` /// can have `undefind` content because the value will be initialized internally. pub fn set(self: *Entry, new_node: ?*Node) void { // Update the entry's node reference after updating the treap below. defer self.node = new_node; if (self.node) |old| { if (new_node) |new| { self.treap.replace(old, new); return; } self.treap.remove(old); self.context = .removed; return; } if (new_node) |new| { // A previous treap.remove() could have rebalanced the nodes // so when inserting after a removal, we have to re-lookup the parent again. // This lookup shouldn't find a node because we're yet to insert it.. var parent: ?*Node = undefined; switch (self.context) { .inserted_under => |p| parent = p, .removed => assert(self.treap.find(self.key, &parent) == null), } self.treap.insert(self.key, parent, new); self.context = .{ .inserted_under = parent }; } } }; fn find(self: Self, key: Key, parent_ref: *?*Node) ?*Node { var node = self.root; parent_ref.* = null; // basic binary search while tracking the parent. while (node) |current| { const order = compare(key, current.key); if (order == .eq) break; parent_ref.* = current; node = current.children[@intFromBool(order == .gt)]; } return node; } fn insert(self: *Self, key: Key, parent: ?*Node, node: *Node) void { // generate a random priority & prepare the node to be inserted into the tree node.key = key; node.priority = self.prng.random(@intFromPtr(node)); node.parent = parent; node.children = [_]?*Node{ null, null }; // point the parent at the new node const link = if (parent) |p| &p.children[@intFromBool(compare(key, p.key) == .gt)] else &self.root; assert(link.* == null); link.* = node; // rotate the node up into the tree to balance it according to its priority while (node.parent) |p| { if (p.priority <= node.priority) break; const is_right = p.children[1] == node; assert(p.children[@intFromBool(is_right)] == node); const rotate_right = !is_right; self.rotate(p, rotate_right); } } fn replace(self: *Self, old: *Node, new: *Node) void { // copy over the values from the old node new.key = old.key; new.priority = old.priority; new.parent = old.parent; new.children = old.children; // point the parent at the new node const link = if (old.parent) |p| &p.children[@intFromBool(p.children[1] == old)] else &self.root; assert(link.* == old); link.* = new; // point the children's parent at the new node for (old.children) |child_node| { const child = child_node orelse continue; assert(child.parent == old); child.parent = new; } } fn remove(self: *Self, node: *Node) void { // rotate the node down to be a leaf of the tree for removal, respecting priorities. while (node.children[0] orelse node.children[1]) |_| { self.rotate(node, rotate_right: { const right = node.children[1] orelse break :rotate_right true; const left = node.children[0] orelse break :rotate_right false; break :rotate_right (left.priority < right.priority); }); } // node is a now a leaf; remove by nulling out the parent's reference to it. const link = if (node.parent) |p| &p.children[@intFromBool(p.children[1] == node)] else &self.root; assert(link.* == node); link.* = null; // clean up after ourselves node.priority = 0; node.parent = null; node.children = [_]?*Node{ null, null }; } fn rotate(self: *Self, node: *Node, right: bool) void { // if right, converts the following: // parent -> (node (target YY adjacent) XX) // parent -> (target YY (node adjacent XX)) // // if left (!right), converts the following: // parent -> (node (target YY adjacent) XX) // parent -> (target YY (node adjacent XX)) const parent = node.parent; const target = node.children[@intFromBool(!right)] orelse unreachable; const adjacent = target.children[@intFromBool(right)]; // rotate the children target.children[@intFromBool(right)] = node; node.children[@intFromBool(!right)] = adjacent; // rotate the parents node.parent = target; target.parent = parent; if (adjacent) |adj| adj.parent = node; // fix the parent link const link = if (parent) |p| &p.children[@intFromBool(p.children[1] == node)] else &self.root; assert(link.* == node); link.* = target; } /// Usage example: /// var iter = treap.inorderIterator(); /// while (iter.next()) |node| { /// ... /// } pub const InorderIterator = struct { current: ?*Node, pub fn next(it: *InorderIterator) ?*Node { const current = it.current; it.current = if (current) |cur| cur.next() else null; return current; } }; pub fn inorderIterator(self: *Self) InorderIterator { return .{ .current = self.getMin() }; } }; }