struct lzma [src]
Alias for std.compress.lzma
Members
- Decode (struct)
- Decompress (struct)
- RangeDecoder (struct)
Source
const std = @import("../std.zig");
const math = std.math;
const mem = std.mem;
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const ArrayList = std.ArrayList;
const Writer = std.Io.Writer;
const Reader = std.Io.Reader;
pub const RangeDecoder = struct {
range: u32,
code: u32,
pub fn init(reader: *Reader) !RangeDecoder {
var counter: u64 = 0;
return initCounting(reader, &counter);
}
pub fn initCounting(reader: *Reader, n_read: *u64) !RangeDecoder {
const reserved = try reader.takeByte();
n_read.* += 1;
if (reserved != 0) return error.InvalidRangeCode;
const code = try reader.takeInt(u32, .big);
n_read.* += 4;
return .{
.range = 0xFFFF_FFFF,
.code = code,
};
}
pub fn isFinished(self: RangeDecoder) bool {
return self.code == 0;
}
fn normalize(self: *RangeDecoder, reader: *Reader, n_read: *u64) !void {
if (self.range < 0x0100_0000) {
self.range <<= 8;
self.code = (self.code << 8) ^ @as(u32, try reader.takeByte());
n_read.* += 1;
}
}
fn getBit(self: *RangeDecoder, reader: *Reader, n_read: *u64) !bool {
self.range >>= 1;
const bit = self.code >= self.range;
if (bit) self.code -= self.range;
try self.normalize(reader, n_read);
return bit;
}
pub fn get(self: *RangeDecoder, reader: *Reader, count: usize, n_read: *u64) !u32 {
var result: u32 = 0;
for (0..count) |_| {
result = (result << 1) ^ @intFromBool(try self.getBit(reader, n_read));
}
return result;
}
pub fn decodeBit(self: *RangeDecoder, reader: *Reader, prob: *u16, n_read: *u64) !bool {
const bound = (self.range >> 11) * prob.*;
if (self.code < bound) {
prob.* += (0x800 - prob.*) >> 5;
self.range = bound;
try self.normalize(reader, n_read);
return false;
} else {
prob.* -= prob.* >> 5;
self.code -= bound;
self.range -= bound;
try self.normalize(reader, n_read);
return true;
}
}
fn parseBitTree(
self: *RangeDecoder,
reader: *Reader,
num_bits: u5,
probs: []u16,
n_read: *u64,
) !u32 {
var tmp: u32 = 1;
var i: @TypeOf(num_bits) = 0;
while (i < num_bits) : (i += 1) {
const bit = try self.decodeBit(reader, &probs[tmp], n_read);
tmp = (tmp << 1) ^ @intFromBool(bit);
}
return tmp - (@as(u32, 1) << num_bits);
}
pub fn parseReverseBitTree(
self: *RangeDecoder,
reader: *Reader,
num_bits: u5,
probs: []u16,
offset: usize,
n_read: *u64,
) !u32 {
var result: u32 = 0;
var tmp: usize = 1;
var i: @TypeOf(num_bits) = 0;
while (i < num_bits) : (i += 1) {
const bit = @intFromBool(try self.decodeBit(reader, &probs[offset + tmp], n_read));
tmp = (tmp << 1) ^ bit;
result ^= @as(u32, bit) << i;
}
return result;
}
};
pub const Decode = struct {
properties: Properties,
literal_probs: Vec2d,
pos_slot_decoder: [4]BitTree(6),
align_decoder: BitTree(4),
pos_decoders: [115]u16,
is_match: [192]u16,
is_rep: [12]u16,
is_rep_g0: [12]u16,
is_rep_g1: [12]u16,
is_rep_g2: [12]u16,
is_rep_0long: [192]u16,
state: usize,
rep: [4]usize,
len_decoder: LenDecoder,
rep_len_decoder: LenDecoder,
pub fn init(gpa: Allocator, properties: Properties) !Decode {
return .{
.properties = properties,
.literal_probs = try Vec2d.init(gpa, 0x400, @as(usize, 1) << (properties.lc + properties.lp), 0x300),
.pos_slot_decoder = @splat(.{}),
.align_decoder = .{},
.pos_decoders = @splat(0x400),
.is_match = @splat(0x400),
.is_rep = @splat(0x400),
.is_rep_g0 = @splat(0x400),
.is_rep_g1 = @splat(0x400),
.is_rep_g2 = @splat(0x400),
.is_rep_0long = @splat(0x400),
.state = 0,
.rep = @splat(0),
.len_decoder = .{},
.rep_len_decoder = .{},
};
}
pub fn deinit(self: *Decode, gpa: Allocator) void {
self.literal_probs.deinit(gpa);
self.* = undefined;
}
pub fn resetState(self: *Decode, gpa: Allocator, new_props: Properties) !void {
new_props.validate();
if (self.properties.lc + self.properties.lp == new_props.lc + new_props.lp) {
self.literal_probs.fill(0x400);
} else {
self.literal_probs.deinit(gpa);
self.literal_probs = try Vec2d.init(gpa, 0x400, @as(usize, 1) << (new_props.lc + new_props.lp), 0x300);
}
self.properties = new_props;
for (&self.pos_slot_decoder) |*t| t.reset();
self.align_decoder.reset();
self.pos_decoders = @splat(0x400);
self.is_match = @splat(0x400);
self.is_rep = @splat(0x400);
self.is_rep_g0 = @splat(0x400);
self.is_rep_g1 = @splat(0x400);
self.is_rep_g2 = @splat(0x400);
self.is_rep_0long = @splat(0x400);
self.state = 0;
self.rep = @splat(0);
self.len_decoder.reset();
self.rep_len_decoder.reset();
}
pub fn process(
self: *Decode,
reader: *Reader,
allocating: *Writer.Allocating,
/// `CircularBuffer` or `std.compress.lzma2.AccumBuffer`.
buffer: anytype,
decoder: *RangeDecoder,
n_read: *u64,
) !ProcessingStatus {
const gpa = allocating.allocator;
const writer = &allocating.writer;
const pos_state = buffer.len & ((@as(usize, 1) << self.properties.pb) - 1);
if (!try decoder.decodeBit(reader, &self.is_match[(self.state << 4) + pos_state], n_read)) {
const byte: u8 = try self.decodeLiteral(reader, buffer, decoder, n_read);
try buffer.appendLiteral(gpa, byte, writer);
self.state = if (self.state < 4)
0
else if (self.state < 10)
self.state - 3
else
self.state - 6;
return .more;
}
var len: usize = undefined;
if (try decoder.decodeBit(reader, &self.is_rep[self.state], n_read)) {
if (!try decoder.decodeBit(reader, &self.is_rep_g0[self.state], n_read)) {
if (!try decoder.decodeBit(reader, &self.is_rep_0long[(self.state << 4) + pos_state], n_read)) {
self.state = if (self.state < 7) 9 else 11;
const dist = self.rep[0] + 1;
try buffer.appendLz(gpa, 1, dist, writer);
return .more;
}
} else {
const idx: usize = if (!try decoder.decodeBit(reader, &self.is_rep_g1[self.state], n_read))
1
else if (!try decoder.decodeBit(reader, &self.is_rep_g2[self.state], n_read))
2
else
3;
const dist = self.rep[idx];
var i = idx;
while (i > 0) : (i -= 1) {
self.rep[i] = self.rep[i - 1];
}
self.rep[0] = dist;
}
len = try self.rep_len_decoder.decode(reader, decoder, pos_state, n_read);
self.state = if (self.state < 7) 8 else 11;
} else {
self.rep[3] = self.rep[2];
self.rep[2] = self.rep[1];
self.rep[1] = self.rep[0];
len = try self.len_decoder.decode(reader, decoder, pos_state, n_read);
self.state = if (self.state < 7) 7 else 10;
const rep_0 = try self.decodeDistance(reader, decoder, len, n_read);
self.rep[0] = rep_0;
if (self.rep[0] == 0xFFFF_FFFF) {
if (decoder.isFinished()) {
return .finished;
}
return error.CorruptInput;
}
}
len += 2;
const dist = self.rep[0] + 1;
try buffer.appendLz(gpa, len, dist, writer);
return .more;
}
fn decodeLiteral(
self: *Decode,
reader: *Reader,
/// `CircularBuffer` or `std.compress.lzma2.AccumBuffer`.
buffer: anytype,
decoder: *RangeDecoder,
n_read: *u64,
) !u8 {
const def_prev_byte = 0;
const prev_byte = @as(usize, buffer.lastOr(def_prev_byte));
var result: usize = 1;
const lit_state = ((buffer.len & ((@as(usize, 1) << self.properties.lp) - 1)) << self.properties.lc) +
(prev_byte >> (8 - self.properties.lc));
const probs = try self.literal_probs.get(lit_state);
if (self.state >= 7) {
var match_byte = @as(usize, try buffer.lastN(self.rep[0] + 1));
while (result < 0x100) {
const match_bit = (match_byte >> 7) & 1;
match_byte <<= 1;
const bit = @intFromBool(try decoder.decodeBit(
reader,
&probs[((@as(usize, 1) + match_bit) << 8) + result],
n_read,
));
result = (result << 1) ^ bit;
if (match_bit != bit) {
break;
}
}
}
while (result < 0x100) {
result = (result << 1) ^ @intFromBool(try decoder.decodeBit(reader, &probs[result], n_read));
}
return @truncate(result - 0x100);
}
fn decodeDistance(
self: *Decode,
reader: *Reader,
decoder: *RangeDecoder,
length: usize,
n_read: *u64,
) !usize {
const len_state = if (length > 3) 3 else length;
const pos_slot: usize = try self.pos_slot_decoder[len_state].parse(reader, decoder, n_read);
if (pos_slot < 4) return pos_slot;
const num_direct_bits = @as(u5, @intCast((pos_slot >> 1) - 1));
var result = (2 ^ (pos_slot & 1)) << num_direct_bits;
if (pos_slot < 14) {
result += try decoder.parseReverseBitTree(
reader,
num_direct_bits,
&self.pos_decoders,
result - pos_slot,
n_read,
);
} else {
result += @as(usize, try decoder.get(reader, num_direct_bits - 4, n_read)) << 4;
result += try self.align_decoder.parseReverse(reader, decoder, n_read);
}
return result;
}
/// A circular buffer for LZ sequences
pub const CircularBuffer = struct {
/// Circular buffer
buf: ArrayList(u8),
/// Length of the buffer
dict_size: usize,
/// Buffer memory limit
mem_limit: usize,
/// Current position
cursor: usize,
/// Total number of bytes sent through the buffer
len: usize,
pub fn init(dict_size: usize, mem_limit: usize) CircularBuffer {
return .{
.buf = .{},
.dict_size = dict_size,
.mem_limit = mem_limit,
.cursor = 0,
.len = 0,
};
}
pub fn get(self: CircularBuffer, index: usize) u8 {
return if (0 <= index and index < self.buf.items.len) self.buf.items[index] else 0;
}
pub fn set(self: *CircularBuffer, gpa: Allocator, index: usize, value: u8) !void {
if (index >= self.mem_limit) {
return error.CorruptInput;
}
try self.buf.ensureTotalCapacity(gpa, index + 1);
while (self.buf.items.len < index) {
self.buf.appendAssumeCapacity(0);
}
self.buf.appendAssumeCapacity(value);
}
/// Retrieve the last byte or return a default
pub fn lastOr(self: CircularBuffer, lit: u8) u8 {
return if (self.len == 0)
lit
else
self.get((self.dict_size + self.cursor - 1) % self.dict_size);
}
/// Retrieve the n-th last byte
pub fn lastN(self: CircularBuffer, dist: usize) !u8 {
if (dist > self.dict_size or dist > self.len) {
return error.CorruptInput;
}
const offset = (self.dict_size + self.cursor - dist) % self.dict_size;
return self.get(offset);
}
/// Append a literal
pub fn appendLiteral(
self: *CircularBuffer,
gpa: Allocator,
lit: u8,
writer: *Writer,
) !void {
try self.set(gpa, self.cursor, lit);
self.cursor += 1;
self.len += 1;
// Flush the circular buffer to the output
if (self.cursor == self.dict_size) {
try writer.writeAll(self.buf.items);
self.cursor = 0;
}
}
/// Fetch an LZ sequence (length, distance) from inside the buffer
pub fn appendLz(
self: *CircularBuffer,
gpa: Allocator,
len: usize,
dist: usize,
writer: *Writer,
) !void {
if (dist > self.dict_size or dist > self.len) {
return error.CorruptInput;
}
var offset = (self.dict_size + self.cursor - dist) % self.dict_size;
var i: usize = 0;
while (i < len) : (i += 1) {
const x = self.get(offset);
try self.appendLiteral(gpa, x, writer);
offset += 1;
if (offset == self.dict_size) {
offset = 0;
}
}
}
pub fn finish(self: *CircularBuffer, writer: *Writer) !void {
if (self.cursor > 0) {
try writer.writeAll(self.buf.items[0..self.cursor]);
self.cursor = 0;
}
}
pub fn deinit(self: *CircularBuffer, gpa: Allocator) void {
self.buf.deinit(gpa);
self.* = undefined;
}
};
pub fn BitTree(comptime num_bits: usize) type {
return struct {
probs: [1 << num_bits]u16 = @splat(0x400),
pub fn parse(self: *@This(), reader: *Reader, decoder: *RangeDecoder, n_read: *u64) !u32 {
return decoder.parseBitTree(reader, num_bits, &self.probs, n_read);
}
pub fn parseReverse(
self: *@This(),
reader: *Reader,
decoder: *RangeDecoder,
n_read: *u64,
) !u32 {
return decoder.parseReverseBitTree(reader, num_bits, &self.probs, 0, n_read);
}
pub fn reset(self: *@This()) void {
@memset(&self.probs, 0x400);
}
};
}
pub const LenDecoder = struct {
choice: u16 = 0x400,
choice2: u16 = 0x400,
low_coder: [16]BitTree(3) = @splat(.{}),
mid_coder: [16]BitTree(3) = @splat(.{}),
high_coder: BitTree(8) = .{},
pub fn decode(
self: *LenDecoder,
reader: *Reader,
decoder: *RangeDecoder,
pos_state: usize,
n_read: *u64,
) !usize {
if (!try decoder.decodeBit(reader, &self.choice, n_read)) {
return @as(usize, try self.low_coder[pos_state].parse(reader, decoder, n_read));
} else if (!try decoder.decodeBit(reader, &self.choice2, n_read)) {
return @as(usize, try self.mid_coder[pos_state].parse(reader, decoder, n_read)) + 8;
} else {
return @as(usize, try self.high_coder.parse(reader, decoder, n_read)) + 16;
}
}
pub fn reset(self: *LenDecoder) void {
self.choice = 0x400;
self.choice2 = 0x400;
for (&self.low_coder) |*t| t.reset();
for (&self.mid_coder) |*t| t.reset();
self.high_coder.reset();
}
};
pub const Vec2d = struct {
data: []u16,
cols: usize,
pub fn init(gpa: Allocator, value: u16, w: usize, h: usize) !Vec2d {
const len = try math.mul(usize, w, h);
const data = try gpa.alloc(u16, len);
@memset(data, value);
return .{
.data = data,
.cols = h,
};
}
pub fn deinit(v: *Vec2d, gpa: Allocator) void {
gpa.free(v.data);
v.* = undefined;
}
pub fn fill(v: *Vec2d, value: u16) void {
@memset(v.data, value);
}
fn get(v: Vec2d, row: usize) ![]u16 {
const start_row = try math.mul(usize, row, v.cols);
const end_row = try math.add(usize, start_row, v.cols);
return v.data[start_row..end_row];
}
};
pub const Options = struct {
unpacked_size: UnpackedSize = .read_from_header,
mem_limit: ?usize = null,
allow_incomplete: bool = false,
};
pub const UnpackedSize = union(enum) {
read_from_header,
read_header_but_use_provided: ?u64,
use_provided: ?u64,
};
const ProcessingStatus = enum {
more,
finished,
};
pub const Properties = struct {
lc: u4,
lp: u3,
pb: u3,
fn validate(self: Properties) void {
assert(self.lc <= 8);
assert(self.lp <= 4);
assert(self.pb <= 4);
}
};
pub const Params = struct {
properties: Properties,
dict_size: u32,
unpacked_size: ?u64,
pub fn readHeader(reader: *Reader, options: Options) !Params {
var props = try reader.takeByte();
if (props >= 225) return error.CorruptInput;
const lc: u4 = @intCast(props % 9);
props /= 9;
const lp: u3 = @intCast(props % 5);
props /= 5;
const pb: u3 = @intCast(props);
const dict_size_provided = try reader.takeInt(u32, .little);
const dict_size = @max(0x1000, dict_size_provided);
const unpacked_size = switch (options.unpacked_size) {
.read_from_header => blk: {
const unpacked_size_provided = try reader.takeInt(u64, .little);
const marker_mandatory = unpacked_size_provided == 0xFFFF_FFFF_FFFF_FFFF;
break :blk if (marker_mandatory) null else unpacked_size_provided;
},
.read_header_but_use_provided => |x| blk: {
_ = try reader.takeInt(u64, .little);
break :blk x;
},
.use_provided => |x| x,
};
return .{
.properties = .{ .lc = lc, .lp = lp, .pb = pb },
.dict_size = dict_size,
.unpacked_size = unpacked_size,
};
}
};
};
pub const Decompress = struct {
gpa: Allocator,
input: *Reader,
reader: Reader,
buffer: Decode.CircularBuffer,
range_decoder: RangeDecoder,
decode: Decode,
err: ?Error,
unpacked_size: ?u64,
pub const Error = error{
OutOfMemory,
ReadFailed,
CorruptInput,
DecompressedSizeMismatch,
EndOfStream,
Overflow,
};
/// Takes ownership of `buffer` which may be resized with `gpa`.
///
/// LZMA was explicitly designed to take advantage of large heap memory
/// being available, with a dictionary size anywhere from 4K to 4G. Thus,
/// this API dynamically allocates the dictionary as-needed.
pub fn initParams(
input: *Reader,
gpa: Allocator,
buffer: []u8,
params: Decode.Params,
mem_limit: usize,
) !Decompress {
return .{
.gpa = gpa,
.input = input,
.buffer = Decode.CircularBuffer.init(params.dict_size, mem_limit),
.range_decoder = try RangeDecoder.init(input),
.decode = try Decode.init(gpa, params.properties),
.reader = .{
.buffer = buffer,
.vtable = &.{
.readVec = readVec,
.stream = stream,
.discard = discard,
},
.seek = 0,
.end = 0,
},
.err = null,
.unpacked_size = params.unpacked_size,
};
}
/// Takes ownership of `buffer` which may be resized with `gpa`.
///
/// LZMA was explicitly designed to take advantage of large heap memory
/// being available, with a dictionary size anywhere from 4K to 4G. Thus,
/// this API dynamically allocates the dictionary as-needed.
pub fn initOptions(
input: *Reader,
gpa: Allocator,
buffer: []u8,
options: Decode.Options,
mem_limit: usize,
) !Decompress {
const params = try Decode.Params.readHeader(input, options);
return initParams(input, gpa, buffer, params, mem_limit);
}
/// Reclaim ownership of the buffer passed to `init`.
pub fn takeBuffer(d: *Decompress) []u8 {
const buffer = d.reader.buffer;
d.reader.buffer = &.{};
return buffer;
}
pub fn deinit(d: *Decompress) void {
const gpa = d.gpa;
gpa.free(d.reader.buffer);
d.buffer.deinit(gpa);
d.decode.deinit(gpa);
d.* = undefined;
}
fn readVec(r: *Reader, data: [][]u8) Reader.Error!usize {
_ = data;
return readIndirect(r);
}
fn stream(r: *Reader, w: *Writer, limit: std.Io.Limit) Reader.StreamError!usize {
_ = w;
_ = limit;
return readIndirect(r);
}
fn discard(r: *Reader, limit: std.Io.Limit) Reader.Error!usize {
const d: *Decompress = @alignCast(@fieldParentPtr("reader", r));
_ = d;
_ = limit;
@panic("TODO");
}
fn readIndirect(r: *Reader) Reader.Error!usize {
const d: *Decompress = @alignCast(@fieldParentPtr("reader", r));
const gpa = d.gpa;
var allocating = Writer.Allocating.initOwnedSlice(gpa, r.buffer);
allocating.writer.end = r.end;
defer {
r.buffer = allocating.writer.buffer;
r.end = allocating.writer.end;
}
if (d.decode.state == math.maxInt(usize)) return error.EndOfStream;
process_next: {
if (d.unpacked_size) |unpacked_size| {
if (d.buffer.len >= unpacked_size) break :process_next;
} else if (d.range_decoder.isFinished()) {
break :process_next;
}
var n_read: u64 = 0;
switch (d.decode.process(d.input, &allocating, &d.buffer, &d.range_decoder, &n_read) catch |err| switch (err) {
error.WriteFailed => {
d.err = error.OutOfMemory;
return error.ReadFailed;
},
error.EndOfStream => {
d.err = error.EndOfStream;
return error.ReadFailed;
},
else => |e| {
d.err = e;
return error.ReadFailed;
},
}) {
.more => return 0,
.finished => break :process_next,
}
}
if (d.unpacked_size) |unpacked_size| {
if (d.buffer.len != unpacked_size) {
d.err = error.DecompressedSizeMismatch;
return error.ReadFailed;
}
}
d.buffer.finish(&allocating.writer) catch |err| switch (err) {
error.WriteFailed => {
d.err = error.OutOfMemory;
return error.ReadFailed;
},
};
d.decode.state = math.maxInt(usize);
return 0;
}
};
test {
_ = @import("lzma/test.zig");
}