struct block [src]
Alias for std.compress.zstandard.decode.block
Members
- decodeBlock (Function)
- decodeBlockHeader (Function)
- decodeBlockHeaderSlice (Function)
- decodeBlockReader (Function)
- decodeBlockRingBuffer (Function)
- decodeLiteralsHeader (Function)
- decodeLiteralsSection (Function)
- decodeLiteralsSectionSlice (Function)
- decodeSequencesHeader (Function)
- DecodeState (struct)
- Error (Error Set)
Source
const std = @import("std");
const assert = std.debug.assert;
const RingBuffer = std.RingBuffer;
const types = @import("../types.zig");
const frame = types.frame;
const Table = types.compressed_block.Table;
const LiteralsSection = types.compressed_block.LiteralsSection;
const SequencesSection = types.compressed_block.SequencesSection;
const huffman = @import("huffman.zig");
const readers = @import("../readers.zig");
const decodeFseTable = @import("fse.zig").decodeFseTable;
pub const Error = error{
BlockSizeOverMaximum,
MalformedBlockSize,
ReservedBlock,
MalformedRleBlock,
MalformedCompressedBlock,
};
pub const DecodeState = struct {
repeat_offsets: [3]u32,
offset: StateData(8),
match: StateData(9),
literal: StateData(9),
offset_fse_buffer: []Table.Fse,
match_fse_buffer: []Table.Fse,
literal_fse_buffer: []Table.Fse,
fse_tables_undefined: bool,
literal_stream_reader: readers.ReverseBitReader,
literal_stream_index: usize,
literal_streams: LiteralsSection.Streams,
literal_header: LiteralsSection.Header,
huffman_tree: ?LiteralsSection.HuffmanTree,
literal_written_count: usize,
written_count: usize = 0,
fn StateData(comptime max_accuracy_log: comptime_int) type {
return struct {
state: State,
table: Table,
accuracy_log: u8,
const State = std.meta.Int(.unsigned, max_accuracy_log);
};
}
pub fn init(
literal_fse_buffer: []Table.Fse,
match_fse_buffer: []Table.Fse,
offset_fse_buffer: []Table.Fse,
) DecodeState {
return DecodeState{
.repeat_offsets = .{
types.compressed_block.start_repeated_offset_1,
types.compressed_block.start_repeated_offset_2,
types.compressed_block.start_repeated_offset_3,
},
.offset = undefined,
.match = undefined,
.literal = undefined,
.literal_fse_buffer = literal_fse_buffer,
.match_fse_buffer = match_fse_buffer,
.offset_fse_buffer = offset_fse_buffer,
.fse_tables_undefined = true,
.literal_written_count = 0,
.literal_header = undefined,
.literal_streams = undefined,
.literal_stream_reader = undefined,
.literal_stream_index = undefined,
.huffman_tree = null,
.written_count = 0,
};
}
/// Prepare the decoder to decode a compressed block. Loads the literals
/// stream and Huffman tree from `literals` and reads the FSE tables from
/// `source`.
///
/// Errors returned:
/// - `error.BitStreamHasNoStartBit` if the (reversed) literal bitstream's
/// first byte does not have any bits set
/// - `error.TreelessLiteralsFirst` `literals` is a treeless literals
/// section and the decode state does not have a Huffman tree from a
/// previous block
/// - `error.RepeatModeFirst` on the first call if one of the sequence FSE
/// tables is set to repeat mode
/// - `error.MalformedAccuracyLog` if an FSE table has an invalid accuracy
/// - `error.MalformedFseTable` if there are errors decoding an FSE table
/// - `error.EndOfStream` if `source` ends before all FSE tables are read
pub fn prepare(
self: *DecodeState,
source: anytype,
literals: LiteralsSection,
sequences_header: SequencesSection.Header,
) !void {
self.literal_written_count = 0;
self.literal_header = literals.header;
self.literal_streams = literals.streams;
if (literals.huffman_tree) |tree| {
self.huffman_tree = tree;
} else if (literals.header.block_type == .treeless and self.huffman_tree == null) {
return error.TreelessLiteralsFirst;
}
switch (literals.header.block_type) {
.raw, .rle => {},
.compressed, .treeless => {
self.literal_stream_index = 0;
switch (literals.streams) {
.one => |slice| try self.initLiteralStream(slice),
.four => |streams| try self.initLiteralStream(streams[0]),
}
},
}
if (sequences_header.sequence_count > 0) {
try self.updateFseTable(source, .literal, sequences_header.literal_lengths);
try self.updateFseTable(source, .offset, sequences_header.offsets);
try self.updateFseTable(source, .match, sequences_header.match_lengths);
self.fse_tables_undefined = false;
}
}
/// Read initial FSE states for sequence decoding.
///
/// Errors returned:
/// - `error.EndOfStream` if `bit_reader` does not contain enough bits.
pub fn readInitialFseState(self: *DecodeState, bit_reader: *readers.ReverseBitReader) error{EndOfStream}!void {
self.literal.state = try bit_reader.readBitsNoEof(u9, self.literal.accuracy_log);
self.offset.state = try bit_reader.readBitsNoEof(u8, self.offset.accuracy_log);
self.match.state = try bit_reader.readBitsNoEof(u9, self.match.accuracy_log);
}
fn updateRepeatOffset(self: *DecodeState, offset: u32) void {
self.repeat_offsets[2] = self.repeat_offsets[1];
self.repeat_offsets[1] = self.repeat_offsets[0];
self.repeat_offsets[0] = offset;
}
fn useRepeatOffset(self: *DecodeState, index: usize) u32 {
if (index == 1)
std.mem.swap(u32, &self.repeat_offsets[0], &self.repeat_offsets[1])
else if (index == 2) {
std.mem.swap(u32, &self.repeat_offsets[0], &self.repeat_offsets[2]);
std.mem.swap(u32, &self.repeat_offsets[1], &self.repeat_offsets[2]);
}
return self.repeat_offsets[0];
}
const DataType = enum { offset, match, literal };
fn updateState(
self: *DecodeState,
comptime choice: DataType,
bit_reader: *readers.ReverseBitReader,
) error{ MalformedFseBits, EndOfStream }!void {
switch (@field(self, @tagName(choice)).table) {
.rle => {},
.fse => |table| {
const data = table[@field(self, @tagName(choice)).state];
const T = @TypeOf(@field(self, @tagName(choice))).State;
const bits_summand = try bit_reader.readBitsNoEof(T, data.bits);
const next_state = std.math.cast(
@TypeOf(@field(self, @tagName(choice))).State,
data.baseline + bits_summand,
) orelse return error.MalformedFseBits;
@field(self, @tagName(choice)).state = next_state;
},
}
}
const FseTableError = error{
MalformedFseTable,
MalformedAccuracyLog,
RepeatModeFirst,
EndOfStream,
};
fn updateFseTable(
self: *DecodeState,
source: anytype,
comptime choice: DataType,
mode: SequencesSection.Header.Mode,
) !void {
const field_name = @tagName(choice);
switch (mode) {
.predefined => {
@field(self, field_name).accuracy_log =
@field(types.compressed_block.default_accuracy_log, field_name);
@field(self, field_name).table =
@field(types.compressed_block, "predefined_" ++ field_name ++ "_fse_table");
},
.rle => {
@field(self, field_name).accuracy_log = 0;
@field(self, field_name).table = .{ .rle = try source.readByte() };
},
.fse => {
var bit_reader = readers.bitReader(source);
const table_size = try decodeFseTable(
&bit_reader,
@field(types.compressed_block.table_symbol_count_max, field_name),
@field(types.compressed_block.table_accuracy_log_max, field_name),
@field(self, field_name ++ "_fse_buffer"),
);
@field(self, field_name).table = .{
.fse = @field(self, field_name ++ "_fse_buffer")[0..table_size],
};
@field(self, field_name).accuracy_log = std.math.log2_int_ceil(usize, table_size);
},
.repeat => if (self.fse_tables_undefined) return error.RepeatModeFirst,
}
}
const Sequence = struct {
literal_length: u32,
match_length: u32,
offset: u32,
};
fn nextSequence(
self: *DecodeState,
bit_reader: *readers.ReverseBitReader,
) error{ InvalidBitStream, EndOfStream }!Sequence {
const raw_code = self.getCode(.offset);
const offset_code = std.math.cast(u5, raw_code) orelse {
return error.InvalidBitStream;
};
const offset_value = (@as(u32, 1) << offset_code) + try bit_reader.readBitsNoEof(u32, offset_code);
const match_code = self.getCode(.match);
if (match_code >= types.compressed_block.match_length_code_table.len)
return error.InvalidBitStream;
const match = types.compressed_block.match_length_code_table[match_code];
const match_length = match[0] + try bit_reader.readBitsNoEof(u32, match[1]);
const literal_code = self.getCode(.literal);
if (literal_code >= types.compressed_block.literals_length_code_table.len)
return error.InvalidBitStream;
const literal = types.compressed_block.literals_length_code_table[literal_code];
const literal_length = literal[0] + try bit_reader.readBitsNoEof(u32, literal[1]);
const offset = if (offset_value > 3) offset: {
const offset = offset_value - 3;
self.updateRepeatOffset(offset);
break :offset offset;
} else offset: {
if (literal_length == 0) {
if (offset_value == 3) {
const offset = self.repeat_offsets[0] - 1;
self.updateRepeatOffset(offset);
break :offset offset;
}
break :offset self.useRepeatOffset(offset_value);
}
break :offset self.useRepeatOffset(offset_value - 1);
};
if (offset == 0) return error.InvalidBitStream;
return .{
.literal_length = literal_length,
.match_length = match_length,
.offset = offset,
};
}
fn executeSequenceSlice(
self: *DecodeState,
dest: []u8,
write_pos: usize,
sequence: Sequence,
) (error{MalformedSequence} || DecodeLiteralsError)!void {
if (sequence.offset > write_pos + sequence.literal_length) return error.MalformedSequence;
try self.decodeLiteralsSlice(dest[write_pos..], sequence.literal_length);
const copy_start = write_pos + sequence.literal_length - sequence.offset;
for (
dest[write_pos + sequence.literal_length ..][0..sequence.match_length],
dest[copy_start..][0..sequence.match_length],
) |*d, s| d.* = s;
self.written_count += sequence.match_length;
}
fn executeSequenceRingBuffer(
self: *DecodeState,
dest: *RingBuffer,
sequence: Sequence,
) (error{MalformedSequence} || DecodeLiteralsError)!void {
if (sequence.offset > @min(dest.data.len, self.written_count + sequence.literal_length))
return error.MalformedSequence;
try self.decodeLiteralsRingBuffer(dest, sequence.literal_length);
const copy_start = dest.write_index + dest.data.len - sequence.offset;
const copy_slice = dest.sliceAt(copy_start, sequence.match_length);
dest.writeSliceForwardsAssumeCapacity(copy_slice.first);
dest.writeSliceForwardsAssumeCapacity(copy_slice.second);
self.written_count += sequence.match_length;
}
const DecodeSequenceError = error{
InvalidBitStream,
EndOfStream,
MalformedSequence,
MalformedFseBits,
} || DecodeLiteralsError;
/// Decode one sequence from `bit_reader` into `dest`, written starting at
/// `write_pos` and update FSE states if `last_sequence` is `false`.
/// `prepare()` must be called for the block before attempting to decode
/// sequences.
///
/// Errors returned:
/// - `error.MalformedSequence` if the decompressed sequence would be
/// longer than `sequence_size_limit` or the sequence's offset is too
/// large
/// - `error.UnexpectedEndOfLiteralStream` if the decoder state's literal
/// streams do not contain enough literals for the sequence (this may
/// mean the literal stream or the sequence is malformed).
/// - `error.InvalidBitStream` if the FSE sequence bitstream is malformed
/// - `error.EndOfStream` if `bit_reader` does not contain enough bits
/// - `error.DestTooSmall` if `dest` is not large enough to holde the
/// decompressed sequence
pub fn decodeSequenceSlice(
self: *DecodeState,
dest: []u8,
write_pos: usize,
bit_reader: *readers.ReverseBitReader,
sequence_size_limit: usize,
last_sequence: bool,
) (error{DestTooSmall} || DecodeSequenceError)!usize {
const sequence = try self.nextSequence(bit_reader);
const sequence_length = @as(usize, sequence.literal_length) + sequence.match_length;
if (sequence_length > sequence_size_limit) return error.MalformedSequence;
if (sequence_length > dest[write_pos..].len) return error.DestTooSmall;
try self.executeSequenceSlice(dest, write_pos, sequence);
if (!last_sequence) {
try self.updateState(.literal, bit_reader);
try self.updateState(.match, bit_reader);
try self.updateState(.offset, bit_reader);
}
return sequence_length;
}
/// Decode one sequence from `bit_reader` into `dest`; see
/// `decodeSequenceSlice`.
pub fn decodeSequenceRingBuffer(
self: *DecodeState,
dest: *RingBuffer,
bit_reader: anytype,
sequence_size_limit: usize,
last_sequence: bool,
) DecodeSequenceError!usize {
const sequence = try self.nextSequence(bit_reader);
const sequence_length = @as(usize, sequence.literal_length) + sequence.match_length;
if (sequence_length > sequence_size_limit) return error.MalformedSequence;
try self.executeSequenceRingBuffer(dest, sequence);
if (!last_sequence) {
try self.updateState(.literal, bit_reader);
try self.updateState(.match, bit_reader);
try self.updateState(.offset, bit_reader);
}
return sequence_length;
}
fn nextLiteralMultiStream(
self: *DecodeState,
) error{BitStreamHasNoStartBit}!void {
self.literal_stream_index += 1;
try self.initLiteralStream(self.literal_streams.four[self.literal_stream_index]);
}
fn initLiteralStream(self: *DecodeState, bytes: []const u8) error{BitStreamHasNoStartBit}!void {
try self.literal_stream_reader.init(bytes);
}
fn isLiteralStreamEmpty(self: *DecodeState) bool {
switch (self.literal_streams) {
.one => return self.literal_stream_reader.isEmpty(),
.four => return self.literal_stream_index == 3 and self.literal_stream_reader.isEmpty(),
}
}
const LiteralBitsError = error{
BitStreamHasNoStartBit,
UnexpectedEndOfLiteralStream,
};
fn readLiteralsBits(
self: *DecodeState,
bit_count_to_read: u16,
) LiteralBitsError!u16 {
return self.literal_stream_reader.readBitsNoEof(u16, bit_count_to_read) catch bits: {
if (self.literal_streams == .four and self.literal_stream_index < 3) {
try self.nextLiteralMultiStream();
break :bits self.literal_stream_reader.readBitsNoEof(u16, bit_count_to_read) catch
return error.UnexpectedEndOfLiteralStream;
} else {
return error.UnexpectedEndOfLiteralStream;
}
};
}
const DecodeLiteralsError = error{
MalformedLiteralsLength,
NotFound,
} || LiteralBitsError;
/// Decode `len` bytes of literals into `dest`.
///
/// Errors returned:
/// - `error.MalformedLiteralsLength` if the number of literal bytes
/// decoded by `self` plus `len` is greater than the regenerated size of
/// `literals`
/// - `error.UnexpectedEndOfLiteralStream` and `error.NotFound` if there
/// are problems decoding Huffman compressed literals
pub fn decodeLiteralsSlice(
self: *DecodeState,
dest: []u8,
len: usize,
) DecodeLiteralsError!void {
if (self.literal_written_count + len > self.literal_header.regenerated_size)
return error.MalformedLiteralsLength;
switch (self.literal_header.block_type) {
.raw => {
const literal_data = self.literal_streams.one[self.literal_written_count..][0..len];
@memcpy(dest[0..len], literal_data);
self.literal_written_count += len;
self.written_count += len;
},
.rle => {
for (0..len) |i| {
dest[i] = self.literal_streams.one[0];
}
self.literal_written_count += len;
self.written_count += len;
},
.compressed, .treeless => {
// const written_bytes_per_stream = (literals.header.regenerated_size + 3) / 4;
const huffman_tree = self.huffman_tree orelse unreachable;
const max_bit_count = huffman_tree.max_bit_count;
const starting_bit_count = LiteralsSection.HuffmanTree.weightToBitCount(
huffman_tree.nodes[huffman_tree.symbol_count_minus_one].weight,
max_bit_count,
);
var bits_read: u4 = 0;
var huffman_tree_index: usize = huffman_tree.symbol_count_minus_one;
var bit_count_to_read: u4 = starting_bit_count;
for (0..len) |i| {
var prefix: u16 = 0;
while (true) {
const new_bits = self.readLiteralsBits(bit_count_to_read) catch |err| {
return err;
};
prefix <<= bit_count_to_read;
prefix |= new_bits;
bits_read += bit_count_to_read;
const result = huffman_tree.query(huffman_tree_index, prefix) catch |err| {
return err;
};
switch (result) {
.symbol => |sym| {
dest[i] = sym;
bit_count_to_read = starting_bit_count;
bits_read = 0;
huffman_tree_index = huffman_tree.symbol_count_minus_one;
break;
},
.index => |index| {
huffman_tree_index = index;
const bit_count = LiteralsSection.HuffmanTree.weightToBitCount(
huffman_tree.nodes[index].weight,
max_bit_count,
);
bit_count_to_read = bit_count - bits_read;
},
}
}
}
self.literal_written_count += len;
self.written_count += len;
},
}
}
/// Decode literals into `dest`; see `decodeLiteralsSlice()`.
pub fn decodeLiteralsRingBuffer(
self: *DecodeState,
dest: *RingBuffer,
len: usize,
) DecodeLiteralsError!void {
if (self.literal_written_count + len > self.literal_header.regenerated_size)
return error.MalformedLiteralsLength;
switch (self.literal_header.block_type) {
.raw => {
const literals_end = self.literal_written_count + len;
const literal_data = self.literal_streams.one[self.literal_written_count..literals_end];
dest.writeSliceAssumeCapacity(literal_data);
self.literal_written_count += len;
self.written_count += len;
},
.rle => {
for (0..len) |_| {
dest.writeAssumeCapacity(self.literal_streams.one[0]);
}
self.literal_written_count += len;
self.written_count += len;
},
.compressed, .treeless => {
// const written_bytes_per_stream = (literals.header.regenerated_size + 3) / 4;
const huffman_tree = self.huffman_tree orelse unreachable;
const max_bit_count = huffman_tree.max_bit_count;
const starting_bit_count = LiteralsSection.HuffmanTree.weightToBitCount(
huffman_tree.nodes[huffman_tree.symbol_count_minus_one].weight,
max_bit_count,
);
var bits_read: u4 = 0;
var huffman_tree_index: usize = huffman_tree.symbol_count_minus_one;
var bit_count_to_read: u4 = starting_bit_count;
for (0..len) |_| {
var prefix: u16 = 0;
while (true) {
const new_bits = try self.readLiteralsBits(bit_count_to_read);
prefix <<= bit_count_to_read;
prefix |= new_bits;
bits_read += bit_count_to_read;
const result = try huffman_tree.query(huffman_tree_index, prefix);
switch (result) {
.symbol => |sym| {
dest.writeAssumeCapacity(sym);
bit_count_to_read = starting_bit_count;
bits_read = 0;
huffman_tree_index = huffman_tree.symbol_count_minus_one;
break;
},
.index => |index| {
huffman_tree_index = index;
const bit_count = LiteralsSection.HuffmanTree.weightToBitCount(
huffman_tree.nodes[index].weight,
max_bit_count,
);
bit_count_to_read = bit_count - bits_read;
},
}
}
}
self.literal_written_count += len;
self.written_count += len;
},
}
}
fn getCode(self: *DecodeState, comptime choice: DataType) u32 {
return switch (@field(self, @tagName(choice)).table) {
.rle => |value| value,
.fse => |table| table[@field(self, @tagName(choice)).state].symbol,
};
}
};
/// Decode a single block from `src` into `dest`. The beginning of `src` must be
/// the start of the block content (i.e. directly after the block header).
/// Increments `consumed_count` by the number of bytes read from `src` to decode
/// the block and returns the decompressed size of the block.
///
/// Errors returned:
///
/// - `error.BlockSizeOverMaximum` if block's size is larger than 1 << 17 or
/// `dest[written_count..].len`
/// - `error.MalformedBlockSize` if `src.len` is smaller than the block size
/// and the block is a raw or compressed block
/// - `error.ReservedBlock` if the block is a reserved block
/// - `error.MalformedRleBlock` if the block is an RLE block and `src.len < 1`
/// - `error.MalformedCompressedBlock` if there are errors decoding a
/// compressed block
/// - `error.DestTooSmall` is `dest` is not large enough to hold the
/// decompressed block
pub fn decodeBlock(
dest: []u8,
src: []const u8,
block_header: frame.Zstandard.Block.Header,
decode_state: *DecodeState,
consumed_count: *usize,
block_size_max: usize,
written_count: usize,
) (error{DestTooSmall} || Error)!usize {
const block_size = block_header.block_size;
if (block_size_max < block_size) return error.BlockSizeOverMaximum;
switch (block_header.block_type) {
.raw => {
if (src.len < block_size) return error.MalformedBlockSize;
if (dest[written_count..].len < block_size) return error.DestTooSmall;
@memcpy(dest[written_count..][0..block_size], src[0..block_size]);
consumed_count.* += block_size;
decode_state.written_count += block_size;
return block_size;
},
.rle => {
if (src.len < 1) return error.MalformedRleBlock;
if (dest[written_count..].len < block_size) return error.DestTooSmall;
for (written_count..block_size + written_count) |write_pos| {
dest[write_pos] = src[0];
}
consumed_count.* += 1;
decode_state.written_count += block_size;
return block_size;
},
.compressed => {
if (src.len < block_size) return error.MalformedBlockSize;
var bytes_read: usize = 0;
const literals = decodeLiteralsSectionSlice(src[0..block_size], &bytes_read) catch
return error.MalformedCompressedBlock;
var fbs = std.io.fixedBufferStream(src[bytes_read..block_size]);
const fbs_reader = fbs.reader();
const sequences_header = decodeSequencesHeader(fbs_reader) catch
return error.MalformedCompressedBlock;
decode_state.prepare(fbs_reader, literals, sequences_header) catch
return error.MalformedCompressedBlock;
bytes_read += fbs.pos;
var bytes_written: usize = 0;
{
const bit_stream_bytes = src[bytes_read..block_size];
var bit_stream: readers.ReverseBitReader = undefined;
bit_stream.init(bit_stream_bytes) catch return error.MalformedCompressedBlock;
if (sequences_header.sequence_count > 0) {
decode_state.readInitialFseState(&bit_stream) catch
return error.MalformedCompressedBlock;
var sequence_size_limit = block_size_max;
for (0..sequences_header.sequence_count) |i| {
const write_pos = written_count + bytes_written;
const decompressed_size = decode_state.decodeSequenceSlice(
dest,
write_pos,
&bit_stream,
sequence_size_limit,
i == sequences_header.sequence_count - 1,
) catch |err| switch (err) {
error.DestTooSmall => return error.DestTooSmall,
else => return error.MalformedCompressedBlock,
};
bytes_written += decompressed_size;
sequence_size_limit -= decompressed_size;
}
}
if (!bit_stream.isEmpty()) {
return error.MalformedCompressedBlock;
}
}
if (decode_state.literal_written_count < literals.header.regenerated_size) {
const len = literals.header.regenerated_size - decode_state.literal_written_count;
if (len > dest[written_count + bytes_written ..].len) return error.DestTooSmall;
decode_state.decodeLiteralsSlice(dest[written_count + bytes_written ..], len) catch
return error.MalformedCompressedBlock;
bytes_written += len;
}
switch (decode_state.literal_header.block_type) {
.treeless, .compressed => {
if (!decode_state.isLiteralStreamEmpty()) return error.MalformedCompressedBlock;
},
.raw, .rle => {},
}
consumed_count.* += block_size;
return bytes_written;
},
.reserved => return error.ReservedBlock,
}
}
/// Decode a single block from `src` into `dest`; see `decodeBlock()`. Returns
/// the size of the decompressed block, which can be used with `dest.sliceLast()`
/// to get the decompressed bytes. `error.BlockSizeOverMaximum` is returned if
/// the block's compressed or decompressed size is larger than `block_size_max`.
pub fn decodeBlockRingBuffer(
dest: *RingBuffer,
src: []const u8,
block_header: frame.Zstandard.Block.Header,
decode_state: *DecodeState,
consumed_count: *usize,
block_size_max: usize,
) Error!usize {
const block_size = block_header.block_size;
if (block_size_max < block_size) return error.BlockSizeOverMaximum;
switch (block_header.block_type) {
.raw => {
if (src.len < block_size) return error.MalformedBlockSize;
// dest may have length zero if block_size == 0, causing division by zero in
// writeSliceAssumeCapacity()
if (block_size > 0) {
const data = src[0..block_size];
dest.writeSliceAssumeCapacity(data);
consumed_count.* += block_size;
decode_state.written_count += block_size;
}
return block_size;
},
.rle => {
if (src.len < 1) return error.MalformedRleBlock;
for (0..block_size) |_| {
dest.writeAssumeCapacity(src[0]);
}
consumed_count.* += 1;
decode_state.written_count += block_size;
return block_size;
},
.compressed => {
if (src.len < block_size) return error.MalformedBlockSize;
var bytes_read: usize = 0;
const literals = decodeLiteralsSectionSlice(src[0..block_size], &bytes_read) catch
return error.MalformedCompressedBlock;
var fbs = std.io.fixedBufferStream(src[bytes_read..block_size]);
const fbs_reader = fbs.reader();
const sequences_header = decodeSequencesHeader(fbs_reader) catch
return error.MalformedCompressedBlock;
decode_state.prepare(fbs_reader, literals, sequences_header) catch
return error.MalformedCompressedBlock;
bytes_read += fbs.pos;
var bytes_written: usize = 0;
{
const bit_stream_bytes = src[bytes_read..block_size];
var bit_stream: readers.ReverseBitReader = undefined;
bit_stream.init(bit_stream_bytes) catch return error.MalformedCompressedBlock;
if (sequences_header.sequence_count > 0) {
decode_state.readInitialFseState(&bit_stream) catch
return error.MalformedCompressedBlock;
var sequence_size_limit = block_size_max;
for (0..sequences_header.sequence_count) |i| {
const decompressed_size = decode_state.decodeSequenceRingBuffer(
dest,
&bit_stream,
sequence_size_limit,
i == sequences_header.sequence_count - 1,
) catch return error.MalformedCompressedBlock;
bytes_written += decompressed_size;
sequence_size_limit -= decompressed_size;
}
}
if (!bit_stream.isEmpty()) {
return error.MalformedCompressedBlock;
}
}
if (decode_state.literal_written_count < literals.header.regenerated_size) {
const len = literals.header.regenerated_size - decode_state.literal_written_count;
decode_state.decodeLiteralsRingBuffer(dest, len) catch
return error.MalformedCompressedBlock;
bytes_written += len;
}
switch (decode_state.literal_header.block_type) {
.treeless, .compressed => {
if (!decode_state.isLiteralStreamEmpty()) return error.MalformedCompressedBlock;
},
.raw, .rle => {},
}
consumed_count.* += block_size;
if (bytes_written > block_size_max) return error.BlockSizeOverMaximum;
return bytes_written;
},
.reserved => return error.ReservedBlock,
}
}
/// Decode a single block from `source` into `dest`. Literal and sequence data
/// from the block is copied into `literals_buffer` and `sequence_buffer`, which
/// must be large enough or `error.LiteralsBufferTooSmall` and
/// `error.SequenceBufferTooSmall` are returned (the maximum block size is an
/// upper bound for the size of both buffers). See `decodeBlock`
/// and `decodeBlockRingBuffer` for function that can decode a block without
/// these extra copies. `error.EndOfStream` is returned if `source` does not
/// contain enough bytes.
pub fn decodeBlockReader(
dest: *RingBuffer,
source: anytype,
block_header: frame.Zstandard.Block.Header,
decode_state: *DecodeState,
block_size_max: usize,
literals_buffer: []u8,
sequence_buffer: []u8,
) !void {
const block_size = block_header.block_size;
var block_reader_limited = std.io.limitedReader(source, block_size);
const block_reader = block_reader_limited.reader();
if (block_size_max < block_size) return error.BlockSizeOverMaximum;
switch (block_header.block_type) {
.raw => {
if (block_size == 0) return;
const slice = dest.sliceAt(dest.write_index, block_size);
try source.readNoEof(slice.first);
try source.readNoEof(slice.second);
dest.write_index = dest.mask2(dest.write_index + block_size);
decode_state.written_count += block_size;
},
.rle => {
const byte = try source.readByte();
for (0..block_size) |_| {
dest.writeAssumeCapacity(byte);
}
decode_state.written_count += block_size;
},
.compressed => {
const literals = try decodeLiteralsSection(block_reader, literals_buffer);
const sequences_header = try decodeSequencesHeader(block_reader);
try decode_state.prepare(block_reader, literals, sequences_header);
var bytes_written: usize = 0;
{
const size = try block_reader.readAll(sequence_buffer);
var bit_stream: readers.ReverseBitReader = undefined;
try bit_stream.init(sequence_buffer[0..size]);
if (sequences_header.sequence_count > 0) {
if (sequence_buffer.len < block_reader_limited.bytes_left)
return error.SequenceBufferTooSmall;
decode_state.readInitialFseState(&bit_stream) catch
return error.MalformedCompressedBlock;
var sequence_size_limit = block_size_max;
for (0..sequences_header.sequence_count) |i| {
const decompressed_size = decode_state.decodeSequenceRingBuffer(
dest,
&bit_stream,
sequence_size_limit,
i == sequences_header.sequence_count - 1,
) catch return error.MalformedCompressedBlock;
sequence_size_limit -= decompressed_size;
bytes_written += decompressed_size;
}
}
if (!bit_stream.isEmpty()) {
return error.MalformedCompressedBlock;
}
}
if (decode_state.literal_written_count < literals.header.regenerated_size) {
const len = literals.header.regenerated_size - decode_state.literal_written_count;
decode_state.decodeLiteralsRingBuffer(dest, len) catch
return error.MalformedCompressedBlock;
bytes_written += len;
}
switch (decode_state.literal_header.block_type) {
.treeless, .compressed => {
if (!decode_state.isLiteralStreamEmpty()) return error.MalformedCompressedBlock;
},
.raw, .rle => {},
}
if (bytes_written > block_size_max) return error.BlockSizeOverMaximum;
if (block_reader_limited.bytes_left != 0) return error.MalformedCompressedBlock;
decode_state.literal_written_count = 0;
},
.reserved => return error.ReservedBlock,
}
}
/// Decode the header of a block.
pub fn decodeBlockHeader(src: *const [3]u8) frame.Zstandard.Block.Header {
const last_block = src[0] & 1 == 1;
const block_type = @as(frame.Zstandard.Block.Type, @enumFromInt((src[0] & 0b110) >> 1));
const block_size = ((src[0] & 0b11111000) >> 3) + (@as(u21, src[1]) << 5) + (@as(u21, src[2]) << 13);
return .{
.last_block = last_block,
.block_type = block_type,
.block_size = block_size,
};
}
/// Decode the header of a block.
///
/// Errors returned:
/// - `error.EndOfStream` if `src.len < 3`
pub fn decodeBlockHeaderSlice(src: []const u8) error{EndOfStream}!frame.Zstandard.Block.Header {
if (src.len < 3) return error.EndOfStream;
return decodeBlockHeader(src[0..3]);
}
/// Decode a `LiteralsSection` from `src`, incrementing `consumed_count` by the
/// number of bytes the section uses.
///
/// Errors returned:
/// - `error.MalformedLiteralsHeader` if the header is invalid
/// - `error.MalformedLiteralsSection` if there are decoding errors
/// - `error.MalformedAccuracyLog` if compressed literals have invalid
/// accuracy
/// - `error.MalformedFseTable` if compressed literals have invalid FSE table
/// - `error.MalformedHuffmanTree` if there are errors decoding a Huffamn tree
/// - `error.EndOfStream` if there are not enough bytes in `src`
pub fn decodeLiteralsSectionSlice(
src: []const u8,
consumed_count: *usize,
) (error{ MalformedLiteralsHeader, MalformedLiteralsSection, EndOfStream } || huffman.Error)!LiteralsSection {
var bytes_read: usize = 0;
const header = header: {
var fbs = std.io.fixedBufferStream(src);
defer bytes_read = fbs.pos;
break :header decodeLiteralsHeader(fbs.reader()) catch return error.MalformedLiteralsHeader;
};
switch (header.block_type) {
.raw => {
if (src.len < bytes_read + header.regenerated_size) return error.MalformedLiteralsSection;
const stream = src[bytes_read..][0..header.regenerated_size];
consumed_count.* += header.regenerated_size + bytes_read;
return LiteralsSection{
.header = header,
.huffman_tree = null,
.streams = .{ .one = stream },
};
},
.rle => {
if (src.len < bytes_read + 1) return error.MalformedLiteralsSection;
const stream = src[bytes_read..][0..1];
consumed_count.* += 1 + bytes_read;
return LiteralsSection{
.header = header,
.huffman_tree = null,
.streams = .{ .one = stream },
};
},
.compressed, .treeless => {
const huffman_tree_start = bytes_read;
const huffman_tree = if (header.block_type == .compressed)
try huffman.decodeHuffmanTreeSlice(src[bytes_read..], &bytes_read)
else
null;
const huffman_tree_size = bytes_read - huffman_tree_start;
const total_streams_size = std.math.sub(usize, header.compressed_size.?, huffman_tree_size) catch
return error.MalformedLiteralsSection;
if (src.len < bytes_read + total_streams_size) return error.MalformedLiteralsSection;
const stream_data = src[bytes_read .. bytes_read + total_streams_size];
const streams = try decodeStreams(header.size_format, stream_data);
consumed_count.* += bytes_read + total_streams_size;
return LiteralsSection{
.header = header,
.huffman_tree = huffman_tree,
.streams = streams,
};
},
}
}
/// Decode a `LiteralsSection` from `src`, incrementing `consumed_count` by the
/// number of bytes the section uses. See `decodeLiterasSectionSlice()`.
pub fn decodeLiteralsSection(
source: anytype,
buffer: []u8,
) !LiteralsSection {
const header = try decodeLiteralsHeader(source);
switch (header.block_type) {
.raw => {
try source.readNoEof(buffer[0..header.regenerated_size]);
return LiteralsSection{
.header = header,
.huffman_tree = null,
.streams = .{ .one = buffer },
};
},
.rle => {
buffer[0] = try source.readByte();
return LiteralsSection{
.header = header,
.huffman_tree = null,
.streams = .{ .one = buffer[0..1] },
};
},
.compressed, .treeless => {
var counting_reader = std.io.countingReader(source);
const huffman_tree = if (header.block_type == .compressed)
try huffman.decodeHuffmanTree(counting_reader.reader(), buffer)
else
null;
const huffman_tree_size = @as(usize, @intCast(counting_reader.bytes_read));
const total_streams_size = std.math.sub(usize, header.compressed_size.?, huffman_tree_size) catch
return error.MalformedLiteralsSection;
if (total_streams_size > buffer.len) return error.LiteralsBufferTooSmall;
try source.readNoEof(buffer[0..total_streams_size]);
const stream_data = buffer[0..total_streams_size];
const streams = try decodeStreams(header.size_format, stream_data);
return LiteralsSection{
.header = header,
.huffman_tree = huffman_tree,
.streams = streams,
};
},
}
}
fn decodeStreams(size_format: u2, stream_data: []const u8) !LiteralsSection.Streams {
if (size_format == 0) {
return .{ .one = stream_data };
}
if (stream_data.len < 6) return error.MalformedLiteralsSection;
const stream_1_length: usize = std.mem.readInt(u16, stream_data[0..2], .little);
const stream_2_length: usize = std.mem.readInt(u16, stream_data[2..4], .little);
const stream_3_length: usize = std.mem.readInt(u16, stream_data[4..6], .little);
const stream_1_start = 6;
const stream_2_start = stream_1_start + stream_1_length;
const stream_3_start = stream_2_start + stream_2_length;
const stream_4_start = stream_3_start + stream_3_length;
if (stream_data.len < stream_4_start) return error.MalformedLiteralsSection;
return .{ .four = .{
stream_data[stream_1_start .. stream_1_start + stream_1_length],
stream_data[stream_2_start .. stream_2_start + stream_2_length],
stream_data[stream_3_start .. stream_3_start + stream_3_length],
stream_data[stream_4_start..],
} };
}
/// Decode a literals section header.
///
/// Errors returned:
/// - `error.EndOfStream` if there are not enough bytes in `source`
pub fn decodeLiteralsHeader(source: anytype) !LiteralsSection.Header {
const byte0 = try source.readByte();
const block_type = @as(LiteralsSection.BlockType, @enumFromInt(byte0 & 0b11));
const size_format = @as(u2, @intCast((byte0 & 0b1100) >> 2));
var regenerated_size: u20 = undefined;
var compressed_size: ?u18 = null;
switch (block_type) {
.raw, .rle => {
switch (size_format) {
0, 2 => {
regenerated_size = byte0 >> 3;
},
1 => regenerated_size = (byte0 >> 4) + (@as(u20, try source.readByte()) << 4),
3 => regenerated_size = (byte0 >> 4) +
(@as(u20, try source.readByte()) << 4) +
(@as(u20, try source.readByte()) << 12),
}
},
.compressed, .treeless => {
const byte1 = try source.readByte();
const byte2 = try source.readByte();
switch (size_format) {
0, 1 => {
regenerated_size = (byte0 >> 4) + ((@as(u20, byte1) & 0b00111111) << 4);
compressed_size = ((byte1 & 0b11000000) >> 6) + (@as(u18, byte2) << 2);
},
2 => {
const byte3 = try source.readByte();
regenerated_size = (byte0 >> 4) + (@as(u20, byte1) << 4) + ((@as(u20, byte2) & 0b00000011) << 12);
compressed_size = ((byte2 & 0b11111100) >> 2) + (@as(u18, byte3) << 6);
},
3 => {
const byte3 = try source.readByte();
const byte4 = try source.readByte();
regenerated_size = (byte0 >> 4) + (@as(u20, byte1) << 4) + ((@as(u20, byte2) & 0b00111111) << 12);
compressed_size = ((byte2 & 0b11000000) >> 6) + (@as(u18, byte3) << 2) + (@as(u18, byte4) << 10);
},
}
},
}
return LiteralsSection.Header{
.block_type = block_type,
.size_format = size_format,
.regenerated_size = regenerated_size,
.compressed_size = compressed_size,
};
}
/// Decode a sequences section header.
///
/// Errors returned:
/// - `error.ReservedBitSet` if the reserved bit is set
/// - `error.EndOfStream` if there are not enough bytes in `source`
pub fn decodeSequencesHeader(
source: anytype,
) !SequencesSection.Header {
var sequence_count: u24 = undefined;
const byte0 = try source.readByte();
if (byte0 == 0) {
return SequencesSection.Header{
.sequence_count = 0,
.offsets = undefined,
.match_lengths = undefined,
.literal_lengths = undefined,
};
} else if (byte0 < 128) {
sequence_count = byte0;
} else if (byte0 < 255) {
sequence_count = (@as(u24, (byte0 - 128)) << 8) + try source.readByte();
} else {
sequence_count = (try source.readByte()) + (@as(u24, try source.readByte()) << 8) + 0x7F00;
}
const compression_modes = try source.readByte();
const matches_mode = @as(SequencesSection.Header.Mode, @enumFromInt((compression_modes & 0b00001100) >> 2));
const offsets_mode = @as(SequencesSection.Header.Mode, @enumFromInt((compression_modes & 0b00110000) >> 4));
const literal_mode = @as(SequencesSection.Header.Mode, @enumFromInt((compression_modes & 0b11000000) >> 6));
if (compression_modes & 0b11 != 0) return error.ReservedBitSet;
return SequencesSection.Header{
.sequence_count = sequence_count,
.offsets = offsets_mode,
.match_lengths = matches_mode,
.literal_lengths = literal_mode,
};
}