Type Function Blake2b [src]

Prototype

pub fn Blake2b(comptime out_bits: usize) type

Parameters

out_bits: usize

Source

pub fn Blake2b(comptime out_bits: usize) type { return struct { const Self = @This(); pub const block_length = 128; pub const digest_length = out_bits / 8; pub const key_length_min = 0; pub const key_length_max = 64; pub const key_length = 32; // recommended key length pub const Options = struct { key: ?[]const u8 = null, salt: ?[16]u8 = null, context: ?[16]u8 = null, expected_out_bits: usize = out_bits }; const iv = [8]u64{ 0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f, 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179, }; const sigma = [12][16]u8{ [_]u8{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, [_]u8{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, [_]u8{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, [_]u8{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, [_]u8{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, [_]u8{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, [_]u8{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, [_]u8{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, [_]u8{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, [_]u8{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 }, [_]u8{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, [_]u8{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, }; h: [8]u64, t: u128, // Streaming cache buf: [128]u8, buf_len: u8, pub fn init(options: Options) Self { comptime debug.assert(8 <= out_bits and out_bits <= 512); var d: Self = undefined; d.h = iv; const key_len = if (options.key) |key| key.len else 0; // default parameters d.h[0] ^= 0x01010000 ^ (key_len << 8) ^ (options.expected_out_bits >> 3); d.t = 0; d.buf_len = 0; if (options.salt) |salt| { d.h[4] ^= mem.readInt(u64, salt[0..8], .little); d.h[5] ^= mem.readInt(u64, salt[8..16], .little); } if (options.context) |context| { d.h[6] ^= mem.readInt(u64, context[0..8], .little); d.h[7] ^= mem.readInt(u64, context[8..16], .little); } if (key_len > 0) { @memset(d.buf[key_len..], 0); d.update(options.key.?); d.buf_len = 128; } return d; } pub fn hash(b: []const u8, out: *[digest_length]u8, options: Options) void { var d = Self.init(options); d.update(b); d.final(out); } pub fn update(d: *Self, b: []const u8) void { var off: usize = 0; // Partial buffer exists from previous update. Copy into buffer then hash. if (d.buf_len != 0 and d.buf_len + b.len > 128) { off += 128 - d.buf_len; @memcpy(d.buf[d.buf_len..][0..off], b[0..off]); d.t += 128; d.round(d.buf[0..], false); d.buf_len = 0; } // Full middle blocks. while (off + 128 < b.len) : (off += 128) { d.t += 128; d.round(b[off..][0..128], false); } // Copy any remainder for next pass. const b_slice = b[off..]; @memcpy(d.buf[d.buf_len..][0..b_slice.len], b_slice); d.buf_len += @as(u8, @intCast(b_slice.len)); } pub fn final(d: *Self, out: *[digest_length]u8) void { @memset(d.buf[d.buf_len..], 0); d.t += d.buf_len; d.round(d.buf[0..], true); for (&d.h) |*x| x.* = mem.nativeToLittle(u64, x.*); out.* = @as(*[digest_length]u8, @ptrCast(&d.h)).*; } fn round(d: *Self, b: *const [128]u8, last: bool) void { var m: [16]u64 = undefined; var v: [16]u64 = undefined; for (&m, 0..) |*r, i| { r.* = mem.readInt(u64, b[8 * i ..][0..8], .little); } var k: usize = 0; while (k < 8) : (k += 1) { v[k] = d.h[k]; v[k + 8] = iv[k]; } v[12] ^= @as(u64, @truncate(d.t)); v[13] ^= @as(u64, @intCast(d.t >> 64)); if (last) v[14] = ~v[14]; const rounds = comptime [_]RoundParam{ roundParam(0, 4, 8, 12, 0, 1), roundParam(1, 5, 9, 13, 2, 3), roundParam(2, 6, 10, 14, 4, 5), roundParam(3, 7, 11, 15, 6, 7), roundParam(0, 5, 10, 15, 8, 9), roundParam(1, 6, 11, 12, 10, 11), roundParam(2, 7, 8, 13, 12, 13), roundParam(3, 4, 9, 14, 14, 15), }; comptime var j: usize = 0; inline while (j < 12) : (j += 1) { inline for (rounds) |r| { v[r.a] = v[r.a] +% v[r.b] +% m[sigma[j][r.x]]; v[r.d] = math.rotr(u64, v[r.d] ^ v[r.a], @as(usize, 32)); v[r.c] = v[r.c] +% v[r.d]; v[r.b] = math.rotr(u64, v[r.b] ^ v[r.c], @as(usize, 24)); v[r.a] = v[r.a] +% v[r.b] +% m[sigma[j][r.y]]; v[r.d] = math.rotr(u64, v[r.d] ^ v[r.a], @as(usize, 16)); v[r.c] = v[r.c] +% v[r.d]; v[r.b] = math.rotr(u64, v[r.b] ^ v[r.c], @as(usize, 63)); } } for (&d.h, 0..) |*r, i| { r.* ^= v[i] ^ v[i + 8]; } } }; }