struct Edwards25519 [src]
Alias for std.crypto.25519.edwards25519.Edwards25519
Group operations over Edwards25519.
Fields
x: Fe
y: Fe
z: Fe
t: Fe
is_base: bool = false
Members
- add (Function)
- basePoint (Constant)
- clampedMul (Function)
- clearCofactor (Function)
- dbl (Function)
- elligator2 (Type Function)
- encoded_length (Constant)
- Fe (struct)
- fromBytes (Function)
- fromHash (Function)
- fromString (Function)
- fromUniform (Function)
- identityElement (Constant)
- mul (Function)
- mulDoubleBasePublic (Function)
- mulMulti (Function)
- mulPublic (Function)
- neg (Function)
- rejectIdentity (Function)
- rejectLowOrder (Function)
- rejectNonCanonical (Function)
- rejectUnexpectedSubgroup (Function)
- scalar (struct)
- sub (Function)
- toBytes (Function)
Source
pub const Edwards25519 = struct {
/// The underlying prime field.
pub const Fe = @import("field.zig").Fe;
/// Field arithmetic mod the order of the main subgroup.
pub const scalar = @import("scalar.zig");
/// Length in bytes of a compressed representation of a point.
pub const encoded_length: usize = 32;
x: Fe,
y: Fe,
z: Fe,
t: Fe,
is_base: bool = false,
/// Decode an Edwards25519 point from its compressed (Y+sign) coordinates.
pub fn fromBytes(s: [encoded_length]u8) EncodingError!Edwards25519 {
const z = Fe.one;
const y = Fe.fromBytes(s);
var u = y.sq();
var v = u.mul(Fe.edwards25519d);
u = u.sub(z);
v = v.add(z);
var x = u.mul(v).pow2523().mul(u);
const vxx = x.sq().mul(v);
const has_m_root = vxx.sub(u).isZero();
const has_p_root = vxx.add(u).isZero();
if ((@intFromBool(has_m_root) | @intFromBool(has_p_root)) == 0) { // best-effort to avoid two conditional branches
return error.InvalidEncoding;
}
x.cMov(x.mul(Fe.sqrtm1), 1 - @intFromBool(has_m_root));
x.cMov(x.neg(), @intFromBool(x.isNegative()) ^ (s[31] >> 7));
const t = x.mul(y);
return Edwards25519{ .x = x, .y = y, .z = z, .t = t };
}
/// Encode an Edwards25519 point.
pub fn toBytes(p: Edwards25519) [encoded_length]u8 {
const zi = p.z.invert();
var s = p.y.mul(zi).toBytes();
s[31] ^= @as(u8, @intFromBool(p.x.mul(zi).isNegative())) << 7;
return s;
}
/// Check that the encoding of a point is canonical.
pub fn rejectNonCanonical(s: [32]u8) NonCanonicalError!void {
return Fe.rejectNonCanonical(s, true);
}
/// The edwards25519 base point.
pub const basePoint = Edwards25519{
.x = Fe{ .limbs = .{ 1738742601995546, 1146398526822698, 2070867633025821, 562264141797630, 587772402128613 } },
.y = Fe{ .limbs = .{ 1801439850948184, 1351079888211148, 450359962737049, 900719925474099, 1801439850948198 } },
.z = Fe.one,
.t = Fe{ .limbs = .{ 1841354044333475, 16398895984059, 755974180946558, 900171276175154, 1821297809914039 } },
.is_base = true,
};
pub const identityElement = Edwards25519{ .x = Fe.zero, .y = Fe.one, .z = Fe.one, .t = Fe.zero };
/// Reject the neutral element.
pub fn rejectIdentity(p: Edwards25519) IdentityElementError!void {
if (p.x.isZero()) {
return error.IdentityElement;
}
}
/// Reject a point if it is not in the prime order subgroup generated by the standard base point.
///
/// If the point is not in the main subgroup:
///
/// - `WeakPublicKeyError` is returned if the point belongs to a low-order subgroup.
/// - `UnexpectedSubgroupError` is returned otherwise.
pub fn rejectUnexpectedSubgroup(p: Edwards25519) (WeakPublicKeyError || UnexpectedSubgroupError)!void {
try p.rejectLowOrder();
// Multiply p by the order of subgroup - This is a prime order group, so the result should be the neutral element.
const _10 = p.dbl();
const _11 = p.add(_10);
const _100 = p.add(_11);
const _110 = _10.add(_100);
const _1000 = _10.add(_110);
const _1011 = _11.add(_1000);
const _10000 = _1000.dbl();
const _100000 = _10000.dbl();
const _100110 = _110.add(_100000);
const _1000000 = _100000.dbl();
const _1010000 = _10000.add(_1000000);
const _1010011 = _11.add(_1010000);
const _1100011 = _10000.add(_1010011);
const _1100111 = _100.add(_1100011);
const _1101011 = _100.add(_1100111);
const _10010011 = _1000000.add(_1010011);
const _10010111 = _100.add(_10010011);
const _10111101 = _100110.add(_10010111);
const _11010011 = _1000000.add(_10010011);
const _11100111 = _1010000.add(_10010111);
const _11101101 = _110.add(_11100111);
const _11110101 = _1000.add(_11101101);
const q = ((_11110101.add(((((_1101011.add(((((_10.add(((_1011.add(_11110101)).shift(126)
.add(_1010011)).shift(9).add(_11110101))).shift(7).add(_1100111)).shift(9).add(_11110101).shift(11)
.add(_10111101)).shift(8).add(_11100111)).shift(9))).shift(6).add(_1011)).shift(14).add(_10010011).shift(10)
.add(_1100011)).shift(9).add(_10010111)).shift(10))).shift(8).add(_11010011)).shift(8).add(_11101101);
q.rejectIdentity() catch return;
return error.UnexpectedSubgroup;
}
/// Multiply a point by the cofactor
pub fn clearCofactor(p: Edwards25519) Edwards25519 {
return p.dbl().dbl().dbl();
}
/// Check that the point does not generate a low-order group.
/// Return a `WeakPublicKey` error if it does.
pub fn rejectLowOrder(p: Edwards25519) WeakPublicKeyError!void {
const zi = p.z.invert();
const x = p.x.mul(zi);
const y = p.y.mul(zi);
const x_neg = x.neg();
const iy = Fe.sqrtm1.mul(y);
if (x.isZero() or y.isZero() or iy.equivalent(x) or iy.equivalent(x_neg)) {
return error.WeakPublicKey;
}
}
/// Flip the sign of the X coordinate.
pub inline fn neg(p: Edwards25519) Edwards25519 {
return .{ .x = p.x.neg(), .y = p.y, .z = p.z, .t = p.t.neg() };
}
/// Double an Edwards25519 point.
pub fn dbl(p: Edwards25519) Edwards25519 {
const t0 = p.x.add(p.y).sq();
var x = p.x.sq();
var z = p.y.sq();
const y = z.add(x);
z = z.sub(x);
x = t0.sub(y);
const t = p.z.sq2().sub(z);
return .{
.x = x.mul(t),
.y = y.mul(z),
.z = z.mul(t),
.t = x.mul(y),
};
}
/// Add two Edwards25519 points.
pub fn add(p: Edwards25519, q: Edwards25519) Edwards25519 {
const a = p.y.sub(p.x).mul(q.y.sub(q.x));
const b = p.x.add(p.y).mul(q.x.add(q.y));
const c = p.t.mul(q.t).mul(Fe.edwards25519d2);
var d = p.z.mul(q.z);
d = d.add(d);
const x = b.sub(a);
const y = b.add(a);
const z = d.add(c);
const t = d.sub(c);
return .{
.x = x.mul(t),
.y = y.mul(z),
.z = z.mul(t),
.t = x.mul(y),
};
}
/// Subtract two Edwards25519 points.
pub fn sub(p: Edwards25519, q: Edwards25519) Edwards25519 {
return p.add(q.neg());
}
/// Double a point `n` times.
fn shift(p: Edwards25519, n: comptime_int) Edwards25519 {
var q = p;
for (0..n) |_| q = q.dbl();
return q;
}
inline fn cMov(p: *Edwards25519, a: Edwards25519, c: u64) void {
p.x.cMov(a.x, c);
p.y.cMov(a.y, c);
p.z.cMov(a.z, c);
p.t.cMov(a.t, c);
}
inline fn pcSelect(comptime n: usize, pc: *const [n]Edwards25519, b: u8) Edwards25519 {
var t = Edwards25519.identityElement;
comptime var i: u8 = 1;
inline while (i < pc.len) : (i += 1) {
t.cMov(pc[i], ((@as(usize, b ^ i) -% 1) >> 8) & 1);
}
return t;
}
fn slide(s: [32]u8) [2 * 32]i8 {
const reduced = if ((s[s.len - 1] & 0x80) == 0) s else scalar.reduce(s);
var e: [2 * 32]i8 = undefined;
for (reduced, 0..) |x, i| {
e[i * 2 + 0] = @as(i8, @as(u4, @truncate(x)));
e[i * 2 + 1] = @as(i8, @as(u4, @truncate(x >> 4)));
}
// Now, e[0..63] is between 0 and 15, e[63] is between 0 and 7
var carry: i8 = 0;
for (e[0..63]) |*x| {
x.* += carry;
carry = (x.* + 8) >> 4;
x.* -= carry * 16;
}
e[63] += carry;
// Now, e[*] is between -8 and 8, including e[63]
return e;
}
// Scalar multiplication with a 4-bit window and the first 8 multiples.
// This requires the scalar to be converted to non-adjacent form.
// Based on real-world benchmarks, we only use this for multi-scalar multiplication.
// NAF could be useful to half the size of precomputation tables, but we intentionally
// avoid these to keep the standard library lightweight.
fn pcMul(pc: *const [9]Edwards25519, s: [32]u8, comptime vartime: bool) IdentityElementError!Edwards25519 {
std.debug.assert(vartime);
const e = slide(s);
var q = Edwards25519.identityElement;
var pos: usize = 2 * 32 - 1;
while (true) : (pos -= 1) {
const slot = e[pos];
if (slot > 0) {
q = q.add(pc[@as(usize, @intCast(slot))]);
} else if (slot < 0) {
q = q.sub(pc[@as(usize, @intCast(-slot))]);
}
if (pos == 0) break;
q = q.dbl().dbl().dbl().dbl();
}
try q.rejectIdentity();
return q;
}
// Scalar multiplication with a 4-bit window and the first 15 multiples.
fn pcMul16(pc: *const [16]Edwards25519, s: [32]u8, comptime vartime: bool) IdentityElementError!Edwards25519 {
var q = Edwards25519.identityElement;
var pos: usize = 252;
while (true) : (pos -= 4) {
const slot: u4 = @truncate((s[pos >> 3] >> @as(u3, @truncate(pos))));
if (vartime) {
if (slot != 0) {
q = q.add(pc[slot]);
}
} else {
q = q.add(pcSelect(16, pc, slot));
}
if (pos == 0) break;
q = q.dbl().dbl().dbl().dbl();
}
try q.rejectIdentity();
return q;
}
fn precompute(p: Edwards25519, comptime count: usize) [1 + count]Edwards25519 {
var pc: [1 + count]Edwards25519 = undefined;
pc[0] = Edwards25519.identityElement;
pc[1] = p;
var i: usize = 2;
while (i <= count) : (i += 1) {
pc[i] = if (i % 2 == 0) pc[i / 2].dbl() else pc[i - 1].add(p);
}
return pc;
}
const basePointPc = pc: {
@setEvalBranchQuota(10000);
break :pc precompute(Edwards25519.basePoint, 15);
};
/// Multiply an Edwards25519 point by a scalar without clamping it.
/// Return error.WeakPublicKey if the base generates a small-order group,
/// and error.IdentityElement if the result is the identity element.
pub fn mul(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
const pc = if (p.is_base) basePointPc else pc: {
const xpc = precompute(p, 15);
xpc[4].rejectIdentity() catch return error.WeakPublicKey;
break :pc xpc;
};
return pcMul16(&pc, s, false);
}
/// Multiply an Edwards25519 point by a *PUBLIC* scalar *IN VARIABLE TIME*
/// This can be used for signature verification.
pub fn mulPublic(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
if (p.is_base) {
return pcMul16(&basePointPc, s, true);
} else {
const pc = precompute(p, 8);
pc[4].rejectIdentity() catch return error.WeakPublicKey;
return pcMul(&pc, s, true);
}
}
/// Double-base multiplication of public parameters - Compute (p1*s1)+(p2*s2) *IN VARIABLE TIME*
/// This can be used for signature verification.
pub fn mulDoubleBasePublic(p1: Edwards25519, s1: [32]u8, p2: Edwards25519, s2: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
var pc1_array: [9]Edwards25519 = undefined;
const pc1 = if (p1.is_base) basePointPc[0..9] else pc: {
pc1_array = precompute(p1, 8);
pc1_array[4].rejectIdentity() catch return error.WeakPublicKey;
break :pc &pc1_array;
};
var pc2_array: [9]Edwards25519 = undefined;
const pc2 = if (p2.is_base) basePointPc[0..9] else pc: {
pc2_array = precompute(p2, 8);
pc2_array[4].rejectIdentity() catch return error.WeakPublicKey;
break :pc &pc2_array;
};
const e1 = slide(s1);
const e2 = slide(s2);
var q = Edwards25519.identityElement;
var pos: usize = 2 * 32 - 1;
while (true) : (pos -= 1) {
const slot1 = e1[pos];
if (slot1 > 0) {
q = q.add(pc1[@as(usize, @intCast(slot1))]);
} else if (slot1 < 0) {
q = q.sub(pc1[@as(usize, @intCast(-slot1))]);
}
const slot2 = e2[pos];
if (slot2 > 0) {
q = q.add(pc2[@as(usize, @intCast(slot2))]);
} else if (slot2 < 0) {
q = q.sub(pc2[@as(usize, @intCast(-slot2))]);
}
if (pos == 0) break;
q = q.dbl().dbl().dbl().dbl();
}
try q.rejectIdentity();
return q;
}
/// Multiscalar multiplication *IN VARIABLE TIME* for public data
/// Computes ps0*ss0 + ps1*ss1 + ps2*ss2... faster than doing many of these operations individually
pub fn mulMulti(comptime count: usize, ps: [count]Edwards25519, ss: [count][32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
var pcs: [count][9]Edwards25519 = undefined;
var bpc: [9]Edwards25519 = undefined;
@memcpy(&bpc, basePointPc[0..bpc.len]);
for (ps, 0..) |p, i| {
if (p.is_base) {
pcs[i] = bpc;
} else {
pcs[i] = precompute(p, 8);
pcs[i][4].rejectIdentity() catch return error.WeakPublicKey;
}
}
var es: [count][2 * 32]i8 = undefined;
for (ss, 0..) |s, i| {
es[i] = slide(s);
}
var q = Edwards25519.identityElement;
var pos: usize = 2 * 32 - 1;
while (true) : (pos -= 1) {
for (es, 0..) |e, i| {
const slot = e[pos];
if (slot > 0) {
q = q.add(pcs[i][@as(usize, @intCast(slot))]);
} else if (slot < 0) {
q = q.sub(pcs[i][@as(usize, @intCast(-slot))]);
}
}
if (pos == 0) break;
q = q.dbl().dbl().dbl().dbl();
}
try q.rejectIdentity();
return q;
}
/// Multiply an Edwards25519 point by a scalar after "clamping" it.
/// Clamping forces the scalar to be a multiple of the cofactor in
/// order to prevent small subgroups attacks.
/// This is strongly recommended for DH operations.
/// Return error.WeakPublicKey if the resulting point is
/// the identity element.
pub fn clampedMul(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
var t: [32]u8 = s;
scalar.clamp(&t);
return mul(p, t);
}
// montgomery -- recover y = sqrt(x^3 + A*x^2 + x)
fn xmontToYmont(x: Fe) NotSquareError!Fe {
var x2 = x.sq();
const x3 = x.mul(x2);
x2 = x2.mul32(Fe.edwards25519a_32);
return x.add(x2).add(x3).sqrt();
}
// montgomery affine coordinates to edwards extended coordinates
fn montToEd(x: Fe, y: Fe) Edwards25519 {
const x_plus_one = x.add(Fe.one);
const x_minus_one = x.sub(Fe.one);
const x_plus_one_y_inv = x_plus_one.mul(y).invert(); // 1/((x+1)*y)
// xed = sqrt(-A-2)*x/y
const xed = x.mul(Fe.edwards25519sqrtam2).mul(x_plus_one_y_inv).mul(x_plus_one);
// yed = (x-1)/(x+1) or 1 if the denominator is 0
var yed = x_plus_one_y_inv.mul(y).mul(x_minus_one);
yed.cMov(Fe.one, @intFromBool(x_plus_one_y_inv.isZero()));
return Edwards25519{
.x = xed,
.y = yed,
.z = Fe.one,
.t = xed.mul(yed),
};
}
/// Elligator2 map - Returns Montgomery affine coordinates
pub fn elligator2(r: Fe) struct { x: Fe, y: Fe, not_square: bool } {
const rr2 = r.sq2().add(Fe.one).invert();
var x = rr2.mul32(Fe.edwards25519a_32).neg(); // x=x1
var x2 = x.sq();
const x3 = x2.mul(x);
x2 = x2.mul32(Fe.edwards25519a_32); // x2 = A*x1^2
const gx1 = x3.add(x).add(x2); // gx1 = x1^3 + A*x1^2 + x1
const not_square = !gx1.isSquare();
// gx1 not a square => x = -x1-A
x.cMov(x.neg(), @intFromBool(not_square));
x2 = Fe.zero;
x2.cMov(Fe.edwards25519a, @intFromBool(not_square));
x = x.sub(x2);
// We have y = sqrt(gx1) or sqrt(gx2) with gx2 = gx1*(A+x1)/(-x1)
// but it is about as fast to just recompute y from the curve equation.
const y = xmontToYmont(x) catch unreachable;
return .{ .x = x, .y = y, .not_square = not_square };
}
/// Map a 64-bit hash into an Edwards25519 point
pub fn fromHash(h: [64]u8) Edwards25519 {
const fe_f = Fe.fromBytes64(h);
var elr = elligator2(fe_f);
const y_sign = !elr.not_square;
const y_neg = elr.y.neg();
elr.y.cMov(y_neg, @intFromBool(elr.y.isNegative()) ^ @intFromBool(y_sign));
return montToEd(elr.x, elr.y).clearCofactor();
}
fn stringToPoints(comptime n: usize, ctx: []const u8, s: []const u8) [n]Edwards25519 {
debug.assert(n <= 2);
const H = crypto.hash.sha2.Sha512;
const h_l: usize = 48;
var xctx = ctx;
var hctx: [H.digest_length]u8 = undefined;
if (ctx.len > 0xff) {
var st = H.init(.{});
st.update("H2C-OVERSIZE-DST-");
st.update(ctx);
st.final(&hctx);
xctx = hctx[0..];
}
const empty_block = [_]u8{0} ** H.block_length;
var t = [3]u8{ 0, n * h_l, 0 };
var xctx_len_u8 = [1]u8{@as(u8, @intCast(xctx.len))};
var st = H.init(.{});
st.update(empty_block[0..]);
st.update(s);
st.update(t[0..]);
st.update(xctx);
st.update(xctx_len_u8[0..]);
var u_0: [H.digest_length]u8 = undefined;
st.final(&u_0);
var u: [n * H.digest_length]u8 = undefined;
var i: usize = 0;
while (i < n * H.digest_length) : (i += H.digest_length) {
u[i..][0..H.digest_length].* = u_0;
var j: usize = 0;
while (i > 0 and j < H.digest_length) : (j += 1) {
u[i + j] ^= u[i + j - H.digest_length];
}
t[2] += 1;
st = H.init(.{});
st.update(u[i..][0..H.digest_length]);
st.update(t[2..3]);
st.update(xctx);
st.update(xctx_len_u8[0..]);
st.final(u[i..][0..H.digest_length]);
}
var px: [n]Edwards25519 = undefined;
i = 0;
while (i < n) : (i += 1) {
@memset(u_0[0 .. H.digest_length - h_l], 0);
u_0[H.digest_length - h_l ..][0..h_l].* = u[i * h_l ..][0..h_l].*;
px[i] = fromHash(u_0);
}
return px;
}
/// Hash a context `ctx` and a string `s` into an Edwards25519 point
///
/// This function implements the edwards25519_XMD:SHA-512_ELL2_RO_ and edwards25519_XMD:SHA-512_ELL2_NU_
/// methods from the "Hashing to Elliptic Curves" standard document.
///
/// Although not strictly required by the standard, it is recommended to avoid NUL characters in
/// the context in order to be compatible with other implementations.
pub fn fromString(comptime random_oracle: bool, ctx: []const u8, s: []const u8) Edwards25519 {
if (random_oracle) {
const px = stringToPoints(2, ctx, s);
return px[0].add(px[1]);
} else {
return stringToPoints(1, ctx, s)[0];
}
}
/// Map a 32 bit uniform bit string into an edwards25519 point
pub fn fromUniform(r: [32]u8) Edwards25519 {
var s = r;
const x_sign = s[31] >> 7;
s[31] &= 0x7f;
const elr = elligator2(Fe.fromBytes(s));
var p = montToEd(elr.x, elr.y);
const p_neg = p.neg();
p.cMov(p_neg, @intFromBool(p.x.isNegative()) ^ x_sign);
return p.clearCofactor();
}
}