Type Function Modulus [src]
A modulus, defining a finite field.
All operations within the field are performed modulo this modulus, without heap allocations.
max_bits represents the number of bits in the maximum value the modulus can be set to.
Prototype
pub fn Modulus(comptime max_bits: comptime_int) type
Parameters
max_bits: comptime_int
Source
pub fn Modulus(comptime max_bits: comptime_int) type {
return struct {
const Self = @This();
/// A field element, representing a value within the field defined by this modulus.
pub const Fe = Fe_(max_bits);
const FeUint = Fe.FeUint;
/// The neutral element.
zero: Fe,
/// The modulus value.
v: FeUint,
/// R^2 for the Montgomery representation.
rr: Fe,
/// Inverse of the first limb
m0inv: Limb,
/// Number of leading zero bits in the modulus.
leading: usize,
// Number of active limbs in the modulus.
fn limbs_count(self: Self) usize {
return self.v.limbs_len;
}
/// Actual size of the modulus, in bits.
pub fn bits(self: Self) usize {
return self.limbs_count() * t_bits - self.leading;
}
/// Returns the element `1`.
pub fn one(self: Self) Fe {
var fe = self.zero;
fe.v.limbs()[0] = 1;
return fe;
}
/// Creates a new modulus from a `Uint` value.
/// The modulus must be odd and larger than 2.
pub fn fromUint(v_: FeUint) InvalidModulusError!Self {
if (!v_.isOdd()) return error.EvenModulus;
var v = v_.normalize();
const hi = v.limbsConst()[v.limbs_len - 1];
const lo = v.limbsConst()[0];
if (v.limbs_len < 2 and lo < 3) {
return error.ModulusTooSmall;
}
const leading = @clz(hi) - carry_bits;
var y = lo;
inline for (0..comptime math.log2_int(usize, t_bits)) |_| {
y = y *% (2 -% lo *% y);
}
const m0inv = (@as(Limb, 1) << t_bits) - (@as(TLimb, @truncate(y)));
const zero = Fe{ .v = FeUint.zero };
var m = Self{
.zero = zero,
.v = v,
.leading = leading,
.m0inv = m0inv,
.rr = undefined, // will be computed right after
};
m.shrink(&m.zero) catch unreachable;
computeRR(&m);
return m;
}
/// Creates a new modulus from a primitive value.
/// The modulus must be odd and larger than 2.
pub fn fromPrimitive(comptime T: type, x: T) (InvalidModulusError || OverflowError)!Self {
comptime assert(@bitSizeOf(T) <= max_bits); // Primitive type is larger than the modulus type.
const v = try FeUint.fromPrimitive(T, x);
return try Self.fromUint(v);
}
/// Creates a new modulus from a byte string.
pub fn fromBytes(bytes: []const u8, comptime endian: Endian) (InvalidModulusError || OverflowError)!Self {
const v = try FeUint.fromBytes(bytes, endian);
return try Self.fromUint(v);
}
/// Serializes the modulus to a byte string.
pub fn toBytes(self: Self, bytes: []u8, comptime endian: Endian) OverflowError!void {
return self.v.toBytes(bytes, endian);
}
/// Rejects field elements that are not in the canonical form.
pub fn rejectNonCanonical(self: Self, fe: Fe) error{NonCanonical}!void {
if (fe.limbs_count() != self.limbs_count() or ct.limbsCmpGeq(fe.v, self.v)) {
return error.NonCanonical;
}
}
// Makes the number of active limbs in a field element match the one of the modulus.
fn shrink(self: Self, fe: *Fe) OverflowError!void {
const new_len = self.limbs_count();
if (fe.limbs_count() < new_len) return error.Overflow;
var acc: Limb = 0;
for (fe.v.limbsConst()[new_len..]) |limb| {
acc |= limb;
}
if (acc != 0) return error.Overflow;
if (new_len > fe.v.limbs_buffer.len) return error.Overflow;
fe.v.limbs_len = new_len;
}
// Computes R^2 for the Montgomery representation.
fn computeRR(self: *Self) void {
self.rr = self.zero;
const n = self.rr.limbs_count();
self.rr.v.limbs()[n - 1] = 1;
for ((n - 1)..(2 * n)) |_| {
self.shiftIn(&self.rr, 0);
}
self.shrink(&self.rr) catch unreachable;
}
/// Computes x << t_bits + y (mod m)
fn shiftIn(self: Self, x: *Fe, y: Limb) void {
var d = self.zero;
const x_limbs = x.v.limbs();
const d_limbs = d.v.limbs();
const m_limbs = self.v.limbsConst();
var need_sub = false;
var i: usize = t_bits - 1;
while (true) : (i -= 1) {
var carry: u1 = @truncate(math.shr(Limb, y, i));
var borrow: u1 = 0;
for (0..self.limbs_count()) |j| {
const l = ct.select(need_sub, d_limbs[j], x_limbs[j]);
var res = (l << 1) + carry;
x_limbs[j] = @as(TLimb, @truncate(res));
carry = @truncate(res >> t_bits);
res = x_limbs[j] -% m_limbs[j] -% borrow;
d_limbs[j] = @as(TLimb, @truncate(res));
borrow = @truncate(res >> t_bits);
}
need_sub = ct.eql(carry, borrow);
if (i == 0) break;
}
x.v.cmov(need_sub, d.v);
}
/// Adds two field elements (mod m).
pub fn add(self: Self, x: Fe, y: Fe) Fe {
var out = x;
const overflow = out.v.addWithOverflow(y.v);
const underflow: u1 = @bitCast(ct.limbsCmpLt(out.v, self.v));
const need_sub = ct.eql(overflow, underflow);
_ = out.v.conditionalSubWithOverflow(need_sub, self.v);
return out;
}
/// Subtracts two field elements (mod m).
pub fn sub(self: Self, x: Fe, y: Fe) Fe {
var out = x;
const underflow: bool = @bitCast(out.v.subWithOverflow(y.v));
_ = out.v.conditionalAddWithOverflow(underflow, self.v);
return out;
}
/// Converts a field element to the Montgomery form.
pub fn toMontgomery(self: Self, x: *Fe) RepresentationError!void {
if (x.montgomery) {
return error.UnexpectedRepresentation;
}
self.shrink(x) catch unreachable;
x.* = self.montgomeryMul(x.*, self.rr);
x.montgomery = true;
}
/// Takes a field element out of the Montgomery form.
pub fn fromMontgomery(self: Self, x: *Fe) RepresentationError!void {
if (!x.montgomery) {
return error.UnexpectedRepresentation;
}
self.shrink(x) catch unreachable;
x.* = self.montgomeryMul(x.*, self.one());
x.montgomery = false;
}
/// Reduces an arbitrary `Uint`, converting it to a field element.
pub fn reduce(self: Self, x: anytype) Fe {
var out = self.zero;
var i = x.limbs_len - 1;
if (self.limbs_count() >= 2) {
const start = @min(i, self.limbs_count() - 2);
var j = start;
while (true) : (j -= 1) {
out.v.limbs()[j] = x.limbsConst()[i];
i -= 1;
if (j == 0) break;
}
}
while (true) : (i -= 1) {
self.shiftIn(&out, x.limbsConst()[i]);
if (i == 0) break;
}
return out;
}
fn montgomeryLoop(self: Self, d: *Fe, x: Fe, y: Fe) u1 {
assert(d.limbs_count() == x.limbs_count());
assert(d.limbs_count() == y.limbs_count());
assert(d.limbs_count() == self.limbs_count());
const a_limbs = x.v.limbsConst();
const b_limbs = y.v.limbsConst();
const d_limbs = d.v.limbs();
const m_limbs = self.v.limbsConst();
var overflow: u1 = 0;
for (0..self.limbs_count()) |i| {
var carry: Limb = 0;
var wide = ct.mulWide(a_limbs[i], b_limbs[0]);
var z_lo = @addWithOverflow(d_limbs[0], wide.lo);
const f = @as(TLimb, @truncate(z_lo[0] *% self.m0inv));
var z_hi = wide.hi +% z_lo[1];
wide = ct.mulWide(f, m_limbs[0]);
z_lo = @addWithOverflow(z_lo[0], wide.lo);
z_hi +%= z_lo[1];
z_hi +%= wide.hi;
carry = (z_hi << 1) | (z_lo[0] >> t_bits);
for (1..self.limbs_count()) |j| {
wide = ct.mulWide(a_limbs[i], b_limbs[j]);
z_lo = @addWithOverflow(d_limbs[j], wide.lo);
z_hi = wide.hi +% z_lo[1];
wide = ct.mulWide(f, m_limbs[j]);
z_lo = @addWithOverflow(z_lo[0], wide.lo);
z_hi +%= z_lo[1];
z_hi +%= wide.hi;
z_lo = @addWithOverflow(z_lo[0], carry);
z_hi +%= z_lo[1];
if (j > 0) {
d_limbs[j - 1] = @as(TLimb, @truncate(z_lo[0]));
}
carry = (z_hi << 1) | (z_lo[0] >> t_bits);
}
const z = overflow + carry;
d_limbs[self.limbs_count() - 1] = @as(TLimb, @truncate(z));
overflow = @as(u1, @truncate(z >> t_bits));
}
return overflow;
}
// Montgomery multiplication.
fn montgomeryMul(self: Self, x: Fe, y: Fe) Fe {
var d = self.zero;
assert(x.limbs_count() == self.limbs_count());
assert(y.limbs_count() == self.limbs_count());
const overflow = self.montgomeryLoop(&d, x, y);
const underflow = 1 -% @intFromBool(ct.limbsCmpGeq(d.v, self.v));
const need_sub = ct.eql(overflow, underflow);
_ = d.v.conditionalSubWithOverflow(need_sub, self.v);
d.montgomery = x.montgomery == y.montgomery;
return d;
}
// Montgomery squaring.
fn montgomerySq(self: Self, x: Fe) Fe {
var d = self.zero;
assert(x.limbs_count() == self.limbs_count());
const overflow = self.montgomeryLoop(&d, x, x);
const underflow = 1 -% @intFromBool(ct.limbsCmpGeq(d.v, self.v));
const need_sub = ct.eql(overflow, underflow);
_ = d.v.conditionalSubWithOverflow(need_sub, self.v);
d.montgomery = true;
return d;
}
// Returns x^e (mod m), with the exponent provided as a byte string.
// `public` must be set to `false` if the exponent it secret.
fn powWithEncodedExponentInternal(self: Self, x: Fe, e: []const u8, endian: Endian, comptime public: bool) NullExponentError!Fe {
var acc: u8 = 0;
for (e) |b| acc |= b;
if (acc == 0) return error.NullExponent;
var out = self.one();
self.toMontgomery(&out) catch unreachable;
if (public and e.len < 3 or (e.len == 3 and e[if (endian == .big) 0 else 2] <= 0b1111)) {
// Do not use a precomputation table for short, public exponents
var x_m = x;
if (x.montgomery == false) {
self.toMontgomery(&x_m) catch unreachable;
}
var s = switch (endian) {
.big => 0,
.little => e.len - 1,
};
while (true) {
const b = e[s];
var j: u3 = 7;
while (true) : (j -= 1) {
out = self.montgomerySq(out);
const k: u1 = @truncate(b >> j);
if (k != 0) {
const t = self.montgomeryMul(out, x_m);
@memcpy(out.v.limbs(), t.v.limbsConst());
}
if (j == 0) break;
}
switch (endian) {
.big => {
s += 1;
if (s == e.len) break;
},
.little => {
if (s == 0) break;
s -= 1;
},
}
}
} else {
// Use a precomputation table for large exponents
var pc = [1]Fe{x} ++ [_]Fe{self.zero} ** 14;
if (x.montgomery == false) {
self.toMontgomery(&pc[0]) catch unreachable;
}
for (1..pc.len) |i| {
pc[i] = self.montgomeryMul(pc[i - 1], pc[0]);
}
var t0 = self.zero;
var s = switch (endian) {
.big => 0,
.little => e.len - 1,
};
while (true) {
const b = e[s];
for ([_]u3{ 4, 0 }) |j| {
for (0..4) |_| {
out = self.montgomerySq(out);
}
const k = (b >> j) & 0b1111;
if (public or std.options.side_channels_mitigations == .none) {
if (k == 0) continue;
t0 = pc[k - 1];
} else {
for (pc, 0..) |t, i| {
t0.v.cmov(ct.eql(k, @as(u8, @truncate(i + 1))), t.v);
}
}
const t1 = self.montgomeryMul(out, t0);
if (public) {
@memcpy(out.v.limbs(), t1.v.limbsConst());
} else {
out.v.cmov(!ct.eql(k, 0), t1.v);
}
}
switch (endian) {
.big => {
s += 1;
if (s == e.len) break;
},
.little => {
if (s == 0) break;
s -= 1;
},
}
}
}
self.fromMontgomery(&out) catch unreachable;
return out;
}
/// Multiplies two field elements.
pub fn mul(self: Self, x: Fe, y: Fe) Fe {
if (x.montgomery != y.montgomery) {
return self.montgomeryMul(x, y);
}
var a_ = x;
if (x.montgomery == false) {
self.toMontgomery(&a_) catch unreachable;
} else {
self.fromMontgomery(&a_) catch unreachable;
}
return self.montgomeryMul(a_, y);
}
/// Squares a field element.
pub fn sq(self: Self, x: Fe) Fe {
var out = x;
if (x.montgomery == true) {
self.fromMontgomery(&out) catch unreachable;
}
out = self.montgomerySq(out);
out.montgomery = false;
self.toMontgomery(&out) catch unreachable;
return out;
}
/// Returns x^e (mod m) in constant time.
pub fn pow(self: Self, x: Fe, e: Fe) NullExponentError!Fe {
var buf: [Fe.encoded_bytes]u8 = undefined;
e.toBytes(&buf, native_endian) catch unreachable;
return self.powWithEncodedExponent(x, &buf, native_endian);
}
/// Returns x^e (mod m), assuming that the exponent is public.
/// The function remains constant time with respect to `x`.
pub fn powPublic(self: Self, x: Fe, e: Fe) NullExponentError!Fe {
var e_normalized = Fe{ .v = e.v.normalize() };
var buf_: [Fe.encoded_bytes]u8 = undefined;
var buf = buf_[0 .. math.divCeil(usize, e_normalized.v.limbs_len * t_bits, 8) catch unreachable];
e_normalized.toBytes(buf, .little) catch unreachable;
const leading = @clz(e_normalized.v.limbsConst()[e_normalized.v.limbs_len - carry_bits]);
buf = buf[0 .. buf.len - leading / 8];
return self.powWithEncodedPublicExponent(x, buf, .little);
}
/// Returns x^e (mod m), with the exponent provided as a byte string.
/// Exponents are usually small, so this function is faster than `powPublic` as a field element
/// doesn't have to be created if a serialized representation is already available.
///
/// If the exponent is public, `powWithEncodedPublicExponent()` can be used instead for a slight speedup.
pub fn powWithEncodedExponent(self: Self, x: Fe, e: []const u8, endian: Endian) NullExponentError!Fe {
return self.powWithEncodedExponentInternal(x, e, endian, false);
}
/// Returns x^e (mod m), the exponent being public and provided as a byte string.
/// Exponents are usually small, so this function is faster than `powPublic` as a field element
/// doesn't have to be created if a serialized representation is already available.
///
/// If the exponent is secret, `powWithEncodedExponent` must be used instead.
pub fn powWithEncodedPublicExponent(self: Self, x: Fe, e: []const u8, endian: Endian) NullExponentError!Fe {
return self.powWithEncodedExponentInternal(x, e, endian, true);
}
};
}