Type Function KeccakF [src]

The Keccak-f permutation.

Prototype

pub fn KeccakF(comptime f: u11) type

Parameters

f: u11

Source

pub fn KeccakF(comptime f: u11) type { comptime assert(f >= 200 and f <= 1600 and f % 200 == 0); // invalid bit size const T = std.meta.Int(.unsigned, f / 25); const Block = [25]T; const PI = [_]u5{ 10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1, }; return struct { const Self = @This(); /// Number of bytes in the state. pub const block_bytes = f / 8; /// Maximum number of rounds for the given f parameter. pub const max_rounds = 12 + 2 * math.log2(f / 25); // Round constants const RC = rc: { const RC64 = [_]u64{ 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000, 0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a, 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008, }; var rc: [max_rounds]T = undefined; for (&rc, RC64[0..max_rounds]) |*t, c| t.* = @as(T, @truncate(c)); break :rc rc; }; st: Block = [_]T{0} ** 25, /// Initialize the state from a slice of bytes. pub fn init(bytes: [block_bytes]u8) Self { var self: Self = undefined; inline for (&self.st, 0..) |*r, i| { r.* = mem.readInt(T, bytes[@sizeOf(T) * i ..][0..@sizeOf(T)], .little); } return self; } /// A representation of the state as bytes. The byte order is architecture-dependent. pub fn asBytes(self: *Self) *[block_bytes]u8 { return mem.asBytes(&self.st); } /// Byte-swap the entire state if the architecture doesn't match the required endianness. pub fn endianSwap(self: *Self) void { for (&self.st) |*w| { w.* = mem.littleToNative(T, w.*); } } /// Set bytes starting at the beginning of the state. pub fn setBytes(self: *Self, bytes: []const u8) void { var i: usize = 0; while (i + @sizeOf(T) <= bytes.len) : (i += @sizeOf(T)) { self.st[i / @sizeOf(T)] = mem.readInt(T, bytes[i..][0..@sizeOf(T)], .little); } if (i < bytes.len) { var padded = [_]u8{0} ** @sizeOf(T); @memcpy(padded[0 .. bytes.len - i], bytes[i..]); self.st[i / @sizeOf(T)] = mem.readInt(T, padded[0..], .little); } } /// XOR a byte into the state at a given offset. pub fn addByte(self: *Self, byte: u8, offset: usize) void { const z = @sizeOf(T) * @as(math.Log2Int(T), @truncate(offset % @sizeOf(T))); self.st[offset / @sizeOf(T)] ^= @as(T, byte) << z; } /// XOR bytes into the beginning of the state. pub fn addBytes(self: *Self, bytes: []const u8) void { var i: usize = 0; while (i + @sizeOf(T) <= bytes.len) : (i += @sizeOf(T)) { self.st[i / @sizeOf(T)] ^= mem.readInt(T, bytes[i..][0..@sizeOf(T)], .little); } if (i < bytes.len) { var padded = [_]u8{0} ** @sizeOf(T); @memcpy(padded[0 .. bytes.len - i], bytes[i..]); self.st[i / @sizeOf(T)] ^= mem.readInt(T, padded[0..], .little); } } /// Extract the first bytes of the state. pub fn extractBytes(self: *Self, out: []u8) void { var i: usize = 0; while (i + @sizeOf(T) <= out.len) : (i += @sizeOf(T)) { mem.writeInt(T, out[i..][0..@sizeOf(T)], self.st[i / @sizeOf(T)], .little); } if (i < out.len) { var padded = [_]u8{0} ** @sizeOf(T); mem.writeInt(T, padded[0..], self.st[i / @sizeOf(T)], .little); @memcpy(out[i..], padded[0 .. out.len - i]); } } /// XOR the first bytes of the state into a slice of bytes. pub fn xorBytes(self: *Self, out: []u8, in: []const u8) void { assert(out.len == in.len); var i: usize = 0; while (i + @sizeOf(T) <= in.len) : (i += @sizeOf(T)) { const x = mem.readInt(T, in[i..][0..@sizeOf(T)], native_endian) ^ mem.nativeToLittle(T, self.st[i / @sizeOf(T)]); mem.writeInt(T, out[i..][0..@sizeOf(T)], x, native_endian); } if (i < in.len) { var padded = [_]u8{0} ** @sizeOf(T); @memcpy(padded[0 .. in.len - i], in[i..]); const x = mem.readInt(T, &padded, native_endian) ^ mem.nativeToLittle(T, self.st[i / @sizeOf(T)]); mem.writeInt(T, &padded, x, native_endian); @memcpy(out[i..], padded[0 .. in.len - i]); } } /// Set the words storing the bytes of a given range to zero. pub fn clear(self: *Self, from: usize, to: usize) void { @memset(self.st[from / @sizeOf(T) .. (to + @sizeOf(T) - 1) / @sizeOf(T)], 0); } /// Clear the entire state, disabling compiler optimizations. pub fn secureZero(self: *Self) void { std.crypto.secureZero(T, &self.st); } inline fn round(self: *Self, rc: T) void { const st = &self.st; // theta var t = [_]T{0} ** 5; inline for (0..5) |i| { inline for (0..5) |j| { t[i] ^= st[j * 5 + i]; } } inline for (0..5) |i| { inline for (0..5) |j| { st[j * 5 + i] ^= t[(i + 4) % 5] ^ math.rotl(T, t[(i + 1) % 5], 1); } } // rho+pi var last = st[1]; comptime var rotc = 0; inline for (0..24) |i| { const x = PI[i]; const tmp = st[x]; rotc = (rotc + i + 1) % @bitSizeOf(T); st[x] = math.rotl(T, last, rotc); last = tmp; } inline for (0..5) |i| { inline for (0..5) |j| { t[j] = st[i * 5 + j]; } inline for (0..5) |j| { st[i * 5 + j] = t[j] ^ (~t[(j + 1) % 5] & t[(j + 2) % 5]); } } // iota st[0] ^= rc; } /// Apply a (possibly) reduced-round permutation to the state. pub fn permuteR(self: *Self, comptime rounds: u5) void { var i = RC.len - rounds; while (i < RC.len - RC.len % 3) : (i += 3) { self.round(RC[i]); self.round(RC[i + 1]); self.round(RC[i + 2]); } while (i < RC.len) : (i += 1) { self.round(RC[i]); } } /// Apply a full-round permutation to the state. pub fn permute(self: *Self) void { self.permuteR(max_rounds); } }; }