Function pbkdf2 [src]

Alias for std.crypto.pbkdf2.pbkdf2

Apply PBKDF2 to generate a key from a password. PBKDF2 is defined in RFC 2898, and is a recommendation of NIST SP 800-132. dk: Slice of appropriate size for generated key. Generally 16 or 32 bytes in length. May be uninitialized. All bytes will be overwritten. Maximum size is maxInt(u32) * Hash.digest_length It is a programming error to pass buffer longer than the maximum size. password: Arbitrary sequence of bytes of any length, including empty. salt: Arbitrary sequence of bytes of any length, including empty. A common length is 8 bytes. rounds: Iteration count. Must be greater than 0. Common values range from 1,000 to 100,000. Larger iteration counts improve security by increasing the time required to compute the dk. It is common to tune this parameter to achieve approximately 100ms. Prf: Pseudo-random function to use. A common choice is std.crypto.auth.hmac.sha2.HmacSha256.

Prototype

pub fn pbkdf2(dk: []u8, password: []const u8, salt: []const u8, rounds: u32, comptime Prf: type) (WeakParametersError || OutputTooLongError)!void

Parameters

dk: []u8password: []const u8salt: []const u8rounds: u32Prf: type

Source

pub fn pbkdf2(dk: []u8, password: []const u8, salt: []const u8, rounds: u32, comptime Prf: type) (WeakParametersError || OutputTooLongError)!void { if (rounds < 1) return error.WeakParameters; const dk_len = dk.len; const h_len = Prf.mac_length; comptime std.debug.assert(h_len >= 1); // FromSpec: // // 1. If dk_len > maxInt(u32) * h_len, output "derived key too long" and // stop. // if (dk_len / h_len >= maxInt(u32)) { // Counter starts at 1 and is 32 bit, so if we have to return more blocks, we would overflow return error.OutputTooLong; } // FromSpec: // // 2. Let l be the number of h_len-long blocks of bytes in the derived key, // rounding up, and let r be the number of bytes in the last // block // const blocks_count = @as(u32, @intCast(std.math.divCeil(usize, dk_len, h_len) catch unreachable)); var r = dk_len % h_len; if (r == 0) { r = h_len; } // FromSpec: // // 3. For each block of the derived key apply the function F defined // below to the password P, the salt S, the iteration count c, and // the block index to compute the block: // // T_1 = F (P, S, c, 1) , // T_2 = F (P, S, c, 2) , // ... // T_l = F (P, S, c, l) , // // where the function F is defined as the exclusive-or sum of the // first c iterates of the underlying pseudorandom function PRF // applied to the password P and the concatenation of the salt S // and the block index i: // // F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c // // where // // U_1 = PRF (P, S || INT (i)) , // U_2 = PRF (P, U_1) , // ... // U_c = PRF (P, U_{c-1}) . // // Here, INT (i) is a four-octet encoding of the integer i, most // significant octet first. // // 4. Concatenate the blocks and extract the first dk_len octets to // produce a derived key DK: // // DK = T_1 || T_2 || ... || T_l<0..r-1> var block: u32 = 0; while (block < blocks_count) : (block += 1) { var prev_block: [h_len]u8 = undefined; var new_block: [h_len]u8 = undefined; // U_1 = PRF (P, S || INT (i)) const block_index = mem.toBytes(mem.nativeToBig(u32, block + 1)); // Block index starts at 0001 var ctx = Prf.init(password); ctx.update(salt); ctx.update(block_index[0..]); ctx.final(prev_block[0..]); // Choose portion of DK to write into (T_n) and initialize const offset = block * h_len; const block_len = if (block != blocks_count - 1) h_len else r; const dk_block: []u8 = dk[offset..][0..block_len]; @memcpy(dk_block, prev_block[0..dk_block.len]); var i: u32 = 1; while (i < rounds) : (i += 1) { // U_c = PRF (P, U_{c-1}) Prf.create(&new_block, prev_block[0..], password); prev_block = new_block; // F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c for (dk_block, 0..) |_, j| { dk_block[j] ^= new_block[j]; } } } }