struct Ed25519 [src]

Alias for std.crypto.25519.ed25519.Ed25519

Ed25519 (EdDSA) signatures.

Members

Source

pub const Ed25519 = struct { /// The underlying elliptic curve. pub const Curve = std.crypto.ecc.Edwards25519; /// Length (in bytes) of optional random bytes, for non-deterministic signatures. pub const noise_length = 32; const CompressedScalar = Curve.scalar.CompressedScalar; const Scalar = Curve.scalar.Scalar; /// An Ed25519 secret key. pub const SecretKey = struct { /// Length (in bytes) of a raw secret key. pub const encoded_length = 64; bytes: [encoded_length]u8, /// Return the seed used to generate this secret key. pub fn seed(self: SecretKey) [KeyPair.seed_length]u8 { return self.bytes[0..KeyPair.seed_length].*; } /// Return the raw public key bytes corresponding to this secret key. pub fn publicKeyBytes(self: SecretKey) [PublicKey.encoded_length]u8 { return self.bytes[KeyPair.seed_length..].*; } /// Create a secret key from raw bytes. pub fn fromBytes(bytes: [encoded_length]u8) !SecretKey { return SecretKey{ .bytes = bytes }; } /// Return the secret key as raw bytes. pub fn toBytes(sk: SecretKey) [encoded_length]u8 { return sk.bytes; } // Return the clamped secret scalar and prefix for this secret key fn scalarAndPrefix(self: SecretKey) struct { scalar: CompressedScalar, prefix: [32]u8 } { var az: [Sha512.digest_length]u8 = undefined; var h = Sha512.init(.{}); h.update(&self.seed()); h.final(&az); var s = az[0..32].*; Curve.scalar.clamp(&s); return .{ .scalar = s, .prefix = az[32..].* }; } }; /// A Signer is used to incrementally compute a signature. /// It can be obtained from a `KeyPair`, using the `signer()` function. pub const Signer = struct { h: Sha512, scalar: CompressedScalar, nonce: CompressedScalar, r_bytes: [Curve.encoded_length]u8, fn init(scalar: CompressedScalar, nonce: CompressedScalar, public_key: PublicKey) (IdentityElementError || KeyMismatchError || NonCanonicalError || WeakPublicKeyError)!Signer { const r = try Curve.basePoint.mul(nonce); const r_bytes = r.toBytes(); var t: [64]u8 = undefined; t[0..32].* = r_bytes; t[32..].* = public_key.bytes; var h = Sha512.init(.{}); h.update(&t); return Signer{ .h = h, .scalar = scalar, .nonce = nonce, .r_bytes = r_bytes }; } /// Add new data to the message being signed. pub fn update(self: *Signer, data: []const u8) void { self.h.update(data); } /// Compute a signature over the entire message. pub fn finalize(self: *Signer) Signature { var hram64: [Sha512.digest_length]u8 = undefined; self.h.final(&hram64); const hram = Curve.scalar.reduce64(hram64); const s = Curve.scalar.mulAdd(hram, self.scalar, self.nonce); return Signature{ .r = self.r_bytes, .s = s }; } }; /// An Ed25519 public key. pub const PublicKey = struct { /// Length (in bytes) of a raw public key. pub const encoded_length = 32; bytes: [encoded_length]u8, /// Create a public key from raw bytes. pub fn fromBytes(bytes: [encoded_length]u8) NonCanonicalError!PublicKey { try Curve.rejectNonCanonical(bytes); return PublicKey{ .bytes = bytes }; } /// Convert a public key to raw bytes. pub fn toBytes(pk: PublicKey) [encoded_length]u8 { return pk.bytes; } fn signWithNonce(public_key: PublicKey, msg: []const u8, scalar: CompressedScalar, nonce: CompressedScalar) (IdentityElementError || NonCanonicalError || KeyMismatchError || WeakPublicKeyError)!Signature { var st = try Signer.init(scalar, nonce, public_key); st.update(msg); return st.finalize(); } fn computeNonceAndSign(public_key: PublicKey, msg: []const u8, noise: ?[noise_length]u8, scalar: CompressedScalar, prefix: []const u8) (IdentityElementError || NonCanonicalError || KeyMismatchError || WeakPublicKeyError)!Signature { var h = Sha512.init(.{}); if (noise) |*z| { h.update(z); } h.update(prefix); h.update(msg); var nonce64: [64]u8 = undefined; h.final(&nonce64); const nonce = Curve.scalar.reduce64(nonce64); return public_key.signWithNonce(msg, scalar, nonce); } }; /// A Verifier is used to incrementally verify a signature. /// It can be obtained from a `Signature`, using the `verifier()` function. pub const Verifier = struct { h: Sha512, s: CompressedScalar, a: Curve, expected_r: Curve, pub const InitError = NonCanonicalError || EncodingError || IdentityElementError; fn init(sig: Signature, public_key: PublicKey) InitError!Verifier { const r = sig.r; const s = sig.s; try Curve.scalar.rejectNonCanonical(s); const a = try Curve.fromBytes(public_key.bytes); try a.rejectIdentity(); try Curve.rejectNonCanonical(r); const expected_r = try Curve.fromBytes(r); try expected_r.rejectIdentity(); var h = Sha512.init(.{}); h.update(&r); h.update(&public_key.bytes); return Verifier{ .h = h, .s = s, .a = a, .expected_r = expected_r }; } /// Add new content to the message to be verified. pub fn update(self: *Verifier, msg: []const u8) void { self.h.update(msg); } pub const VerifyError = WeakPublicKeyError || IdentityElementError || SignatureVerificationError; /// Verify that the signature is valid for the entire message. pub fn verify(self: *Verifier) VerifyError!void { var hram64: [Sha512.digest_length]u8 = undefined; self.h.final(&hram64); const hram = Curve.scalar.reduce64(hram64); const sb_ah = try Curve.basePoint.mulDoubleBasePublic(self.s, self.a.neg(), hram); if (self.expected_r.sub(sb_ah).rejectLowOrder()) { return error.SignatureVerificationFailed; } else |_| {} } }; /// An Ed25519 signature. pub const Signature = struct { /// Length (in bytes) of a raw signature. pub const encoded_length = Curve.encoded_length + @sizeOf(CompressedScalar); /// The R component of an EdDSA signature. r: [Curve.encoded_length]u8, /// The S component of an EdDSA signature. s: CompressedScalar, /// Return the raw signature (r, s) in little-endian format. pub fn toBytes(sig: Signature) [encoded_length]u8 { var bytes: [encoded_length]u8 = undefined; bytes[0..Curve.encoded_length].* = sig.r; bytes[Curve.encoded_length..].* = sig.s; return bytes; } /// Create a signature from a raw encoding of (r, s). /// EdDSA always assumes little-endian. pub fn fromBytes(bytes: [encoded_length]u8) Signature { return Signature{ .r = bytes[0..Curve.encoded_length].*, .s = bytes[Curve.encoded_length..].*, }; } /// Create a Verifier for incremental verification of a signature. pub fn verifier(sig: Signature, public_key: PublicKey) Verifier.InitError!Verifier { return Verifier.init(sig, public_key); } pub const VerifyError = Verifier.InitError || Verifier.VerifyError; /// Verify the signature against a message and public key. /// Return IdentityElement or NonCanonical if the public key or signature are not in the expected range, /// or SignatureVerificationError if the signature is invalid for the given message and key. pub fn verify(sig: Signature, msg: []const u8, public_key: PublicKey) VerifyError!void { var st = try sig.verifier(public_key); st.update(msg); try st.verify(); } }; /// An Ed25519 key pair. pub const KeyPair = struct { /// Length (in bytes) of a seed required to create a key pair. pub const seed_length = noise_length; /// Public part. public_key: PublicKey, /// Secret scalar. secret_key: SecretKey, /// Deterministically derive a key pair from a cryptograpically secure secret seed. /// /// To create a new key, applications should generally call `generate()` instead of this function. /// /// As in RFC 8032, an Ed25519 public key is generated by hashing /// the secret key using the SHA-512 function, and interpreting the /// bit-swapped, clamped lower-half of the output as the secret scalar. /// /// For this reason, an EdDSA secret key is commonly called a seed, /// from which the actual secret is derived. pub fn generateDeterministic(seed: [seed_length]u8) IdentityElementError!KeyPair { var az: [Sha512.digest_length]u8 = undefined; var h = Sha512.init(.{}); h.update(&seed); h.final(&az); const pk_p = Curve.basePoint.clampedMul(az[0..32].*) catch return error.IdentityElement; const pk_bytes = pk_p.toBytes(); var sk_bytes: [SecretKey.encoded_length]u8 = undefined; sk_bytes[0..seed_length].* = seed; sk_bytes[seed_length..].* = pk_bytes; return KeyPair{ .public_key = PublicKey.fromBytes(pk_bytes) catch unreachable, .secret_key = try SecretKey.fromBytes(sk_bytes), }; } /// Generate a new, random key pair. /// /// `crypto.random.bytes` must be supported by the target. pub fn generate() KeyPair { var random_seed: [seed_length]u8 = undefined; while (true) { crypto.random.bytes(&random_seed); return generateDeterministic(random_seed) catch { @branchHint(.unlikely); continue; }; } } /// Create a key pair from an existing secret key. /// /// Note that with EdDSA, storing the seed, and recovering the key pair /// from it is recommended over storing the entire secret key. /// The seed of an exiting key pair can be obtained with /// `key_pair.secret_key.seed()`, and the secret key can then be /// recomputed using `SecretKey.generateDeterministic()`. pub fn fromSecretKey(secret_key: SecretKey) (NonCanonicalError || EncodingError || IdentityElementError)!KeyPair { // It is critical for EdDSA to use the correct public key. // In order to enforce this, a SecretKey implicitly includes a copy of the public key. // With runtime safety, we can still afford checking that the public key is correct. if (std.debug.runtime_safety) { const pk_p = try Curve.fromBytes(secret_key.publicKeyBytes()); const recomputed_kp = try generateDeterministic(secret_key.seed()); if (!mem.eql(u8, &recomputed_kp.public_key.toBytes(), &pk_p.toBytes())) { return error.NonCanonical; } } return KeyPair{ .public_key = try PublicKey.fromBytes(secret_key.publicKeyBytes()), .secret_key = secret_key, }; } /// Sign a message using the key pair. /// The noise can be null in order to create deterministic signatures. /// If deterministic signatures are not required, the noise should be randomly generated instead. /// This helps defend against fault attacks. pub fn sign(key_pair: KeyPair, msg: []const u8, noise: ?[noise_length]u8) (IdentityElementError || NonCanonicalError || KeyMismatchError || WeakPublicKeyError)!Signature { if (!mem.eql(u8, &key_pair.secret_key.publicKeyBytes(), &key_pair.public_key.toBytes())) { return error.KeyMismatch; } const scalar_and_prefix = key_pair.secret_key.scalarAndPrefix(); return key_pair.public_key.computeNonceAndSign( msg, noise, scalar_and_prefix.scalar, &scalar_and_prefix.prefix, ); } /// Create a Signer, that can be used for incremental signing. /// Note that the signature is not deterministic. /// The noise parameter, if set, should be something unique for each message, /// such as a random nonce, or a counter. pub fn signer(key_pair: KeyPair, noise: ?[noise_length]u8) (IdentityElementError || KeyMismatchError || NonCanonicalError || WeakPublicKeyError)!Signer { if (!mem.eql(u8, &key_pair.secret_key.publicKeyBytes(), &key_pair.public_key.toBytes())) { return error.KeyMismatch; } const scalar_and_prefix = key_pair.secret_key.scalarAndPrefix(); var h = Sha512.init(.{}); h.update(&scalar_and_prefix.prefix); var noise2: [noise_length]u8 = undefined; crypto.random.bytes(&noise2); h.update(&noise2); if (noise) |*z| { h.update(z); } var nonce64: [64]u8 = undefined; h.final(&nonce64); const nonce = Curve.scalar.reduce64(nonce64); return Signer.init(scalar_and_prefix.scalar, nonce, key_pair.public_key); } }; /// A (signature, message, public_key) tuple for batch verification pub const BatchElement = struct { sig: Signature, msg: []const u8, public_key: PublicKey, }; /// Verify several signatures in a single operation, much faster than verifying signatures one-by-one pub fn verifyBatch(comptime count: usize, signature_batch: [count]BatchElement) (SignatureVerificationError || IdentityElementError || WeakPublicKeyError || EncodingError || NonCanonicalError)!void { var r_batch: [count]CompressedScalar = undefined; var s_batch: [count]CompressedScalar = undefined; var a_batch: [count]Curve = undefined; var expected_r_batch: [count]Curve = undefined; for (signature_batch, 0..) |signature, i| { const r = signature.sig.r; const s = signature.sig.s; try Curve.scalar.rejectNonCanonical(s); const a = try Curve.fromBytes(signature.public_key.bytes); try a.rejectIdentity(); try Curve.rejectNonCanonical(r); const expected_r = try Curve.fromBytes(r); try expected_r.rejectIdentity(); expected_r_batch[i] = expected_r; r_batch[i] = r; s_batch[i] = s; a_batch[i] = a; } var hram_batch: [count]Curve.scalar.CompressedScalar = undefined; for (signature_batch, 0..) |signature, i| { var h = Sha512.init(.{}); h.update(&r_batch[i]); h.update(&signature.public_key.bytes); h.update(signature.msg); var hram64: [Sha512.digest_length]u8 = undefined; h.final(&hram64); hram_batch[i] = Curve.scalar.reduce64(hram64); } var z_batch: [count]Curve.scalar.CompressedScalar = undefined; for (&z_batch) |*z| { crypto.random.bytes(z[0..16]); @memset(z[16..], 0); } var zs_sum = Curve.scalar.zero; for (z_batch, 0..) |z, i| { const zs = Curve.scalar.mul(z, s_batch[i]); zs_sum = Curve.scalar.add(zs_sum, zs); } zs_sum = Curve.scalar.mul8(zs_sum); var zhs: [count]Curve.scalar.CompressedScalar = undefined; for (z_batch, 0..) |z, i| { zhs[i] = Curve.scalar.mul(z, hram_batch[i]); } const zr = (try Curve.mulMulti(count, expected_r_batch, z_batch)).clearCofactor(); const zah = (try Curve.mulMulti(count, a_batch, zhs)).clearCofactor(); const zsb = try Curve.basePoint.mulPublic(zs_sum); if (zr.add(zah).sub(zsb).rejectIdentity()) |_| { return error.SignatureVerificationFailed; } else |_| {} } /// Ed25519 signatures with key blinding. pub const key_blinding = struct { /// Length (in bytes) of a blinding seed. pub const blind_seed_length = 32; /// A blind secret key. pub const BlindSecretKey = struct { prefix: [64]u8, blind_scalar: CompressedScalar, blind_public_key: BlindPublicKey, }; /// A blind public key. pub const BlindPublicKey = struct { /// Public key equivalent, that can used for signature verification. key: PublicKey, /// Recover a public key from a blind version of it. pub fn unblind(blind_public_key: BlindPublicKey, blind_seed: [blind_seed_length]u8, ctx: []const u8) (IdentityElementError || NonCanonicalError || EncodingError || WeakPublicKeyError)!PublicKey { const blind_h = blindCtx(blind_seed, ctx); const inv_blind_factor = Scalar.fromBytes(blind_h[0..32].*).invert().toBytes(); const pk_p = try (try Curve.fromBytes(blind_public_key.key.bytes)).mul(inv_blind_factor); return PublicKey.fromBytes(pk_p.toBytes()); } }; /// A blind key pair. pub const BlindKeyPair = struct { blind_public_key: BlindPublicKey, blind_secret_key: BlindSecretKey, /// Create an blind key pair from an existing key pair, a blinding seed and a context. pub fn init(key_pair: Ed25519.KeyPair, blind_seed: [blind_seed_length]u8, ctx: []const u8) (NonCanonicalError || IdentityElementError)!BlindKeyPair { var h: [Sha512.digest_length]u8 = undefined; Sha512.hash(&key_pair.secret_key.seed(), &h, .{}); Curve.scalar.clamp(h[0..32]); const scalar = Curve.scalar.reduce(h[0..32].*); const blind_h = blindCtx(blind_seed, ctx); const blind_factor = Curve.scalar.reduce(blind_h[0..32].*); const blind_scalar = Curve.scalar.mul(scalar, blind_factor); const blind_public_key = BlindPublicKey{ .key = try PublicKey.fromBytes((Curve.basePoint.mul(blind_scalar) catch return error.IdentityElement).toBytes()), }; var prefix: [64]u8 = undefined; prefix[0..32].* = h[32..64].*; prefix[32..64].* = blind_h[32..64].*; const blind_secret_key = BlindSecretKey{ .prefix = prefix, .blind_scalar = blind_scalar, .blind_public_key = blind_public_key, }; return BlindKeyPair{ .blind_public_key = blind_public_key, .blind_secret_key = blind_secret_key, }; } /// Sign a message using a blind key pair, and optional random noise. /// Having noise creates non-standard, non-deterministic signatures, /// but has been proven to increase resilience against fault attacks. pub fn sign(key_pair: BlindKeyPair, msg: []const u8, noise: ?[noise_length]u8) (IdentityElementError || KeyMismatchError || NonCanonicalError || WeakPublicKeyError)!Signature { const scalar = key_pair.blind_secret_key.blind_scalar; const prefix = key_pair.blind_secret_key.prefix; return (try PublicKey.fromBytes(key_pair.blind_public_key.key.bytes)) .computeNonceAndSign(msg, noise, scalar, &prefix); } }; /// Compute a blind context from a blinding seed and a context. fn blindCtx(blind_seed: [blind_seed_length]u8, ctx: []const u8) [Sha512.digest_length]u8 { var blind_h: [Sha512.digest_length]u8 = undefined; var hx = Sha512.init(.{}); hx.update(&blind_seed); hx.update(&[1]u8{0}); hx.update(ctx); hx.final(&blind_h); return blind_h; } }; }