struct timing_safe [src]

Alias for std.crypto.timing_safe

Please see this accepted proposal for the long-term plans regarding constant-time operations in Zig: https://github.com/ziglang/zig/issues/1776

Members

Source

//! Please see this accepted proposal for the long-term plans regarding //! constant-time operations in Zig: https://github.com/ziglang/zig/issues/1776 const std = @import("../std.zig"); const assert = std.debug.assert; const Endian = std.builtin.Endian; const Order = std.math.Order; /// Compares two arrays in constant time (for a given length) and returns whether they are equal. /// This function was designed to compare short cryptographic secrets (MACs, signatures). /// For all other applications, use mem.eql() instead. pub fn eql(comptime T: type, a: T, b: T) bool { switch (@typeInfo(T)) { .array => |info| { const C = info.child; if (@typeInfo(C) != .int) { @compileError("Elements to be compared must be integers"); } var acc = @as(C, 0); for (a, 0..) |x, i| { acc |= x ^ b[i]; } const s = @typeInfo(C).int.bits; const Cu = std.meta.Int(.unsigned, s); const Cext = std.meta.Int(.unsigned, s + 1); return @as(bool, @bitCast(@as(u1, @truncate((@as(Cext, @as(Cu, @bitCast(acc))) -% 1) >> s)))); }, .vector => |info| { const C = info.child; if (@typeInfo(C) != .int) { @compileError("Elements to be compared must be integers"); } const acc = @reduce(.Or, a ^ b); const s = @typeInfo(C).int.bits; const Cu = std.meta.Int(.unsigned, s); const Cext = std.meta.Int(.unsigned, s + 1); return @as(bool, @bitCast(@as(u1, @truncate((@as(Cext, @as(Cu, @bitCast(acc))) -% 1) >> s)))); }, else => { @compileError("Only arrays and vectors can be compared"); }, } } /// Compare two integers serialized as arrays of the same size, in constant time. /// Returns .lt if ab and .eq if a=b pub fn compare(comptime T: type, a: []const T, b: []const T, endian: Endian) Order { assert(a.len == b.len); const bits = switch (@typeInfo(T)) { .int => |cinfo| if (cinfo.signedness != .unsigned) @compileError("Elements to be compared must be unsigned") else cinfo.bits, else => @compileError("Elements to be compared must be integers"), }; const Cext = std.meta.Int(.unsigned, bits + 1); var gt: T = 0; var eq: T = 1; if (endian == .little) { var i = a.len; while (i != 0) { i -= 1; const x1 = a[i]; const x2 = b[i]; gt |= @as(T, @truncate((@as(Cext, x2) -% @as(Cext, x1)) >> bits)) & eq; eq &= @as(T, @truncate((@as(Cext, (x2 ^ x1)) -% 1) >> bits)); } } else { for (a, 0..) |x1, i| { const x2 = b[i]; gt |= @as(T, @truncate((@as(Cext, x2) -% @as(Cext, x1)) >> bits)) & eq; eq &= @as(T, @truncate((@as(Cext, (x2 ^ x1)) -% 1) >> bits)); } } if (gt != 0) { return Order.gt; } else if (eq != 0) { return Order.eq; } return Order.lt; } /// Add two integers serialized as arrays of the same size, in constant time. /// The result is stored into `result`, and `true` is returned if an overflow occurred. pub fn add(comptime T: type, a: []const T, b: []const T, result: []T, endian: Endian) bool { const len = a.len; assert(len == b.len and len == result.len); var carry: u1 = 0; if (endian == .little) { var i: usize = 0; while (i < len) : (i += 1) { const ov1 = @addWithOverflow(a[i], b[i]); const ov2 = @addWithOverflow(ov1[0], carry); result[i] = ov2[0]; carry = ov1[1] | ov2[1]; } } else { var i: usize = len; while (i != 0) { i -= 1; const ov1 = @addWithOverflow(a[i], b[i]); const ov2 = @addWithOverflow(ov1[0], carry); result[i] = ov2[0]; carry = ov1[1] | ov2[1]; } } return @as(bool, @bitCast(carry)); } /// Subtract two integers serialized as arrays of the same size, in constant time. /// The result is stored into `result`, and `true` is returned if an underflow occurred. pub fn sub(comptime T: type, a: []const T, b: []const T, result: []T, endian: Endian) bool { const len = a.len; assert(len == b.len and len == result.len); var borrow: u1 = 0; if (endian == .little) { var i: usize = 0; while (i < len) : (i += 1) { const ov1 = @subWithOverflow(a[i], b[i]); const ov2 = @subWithOverflow(ov1[0], borrow); result[i] = ov2[0]; borrow = ov1[1] | ov2[1]; } } else { var i: usize = len; while (i != 0) { i -= 1; const ov1 = @subWithOverflow(a[i], b[i]); const ov2 = @subWithOverflow(ov1[0], borrow); result[i] = ov2[0]; borrow = ov1[1] | ov2[1]; } } return @as(bool, @bitCast(borrow)); } fn markSecret(ptr: anytype, comptime action: enum { classify, declassify }) void { const t = @typeInfo(@TypeOf(ptr)); if (t != .pointer) @compileError("Pointer expected - Found: " ++ @typeName(@TypeOf(ptr))); const p = t.pointer; if (p.is_allowzero) @compileError("A nullable pointer is always assumed to leak information via side channels"); const child = @typeInfo(p.child); switch (child) { .void, .null, .comptime_int, .comptime_float => return, .pointer => { if (child.pointer.size == .Slice) { @compileError("Found pointer to pointer. If the intent was to pass a slice, maybe remove the leading & in the function call"); } @compileError("A pointer value is always assumed leak information via side channels"); }, else => { const mem8: *const [@sizeOf(@TypeOf(ptr.*))]u8 = @constCast(@ptrCast(ptr)); if (action == .classify) { std.valgrind.memcheck.makeMemUndefined(mem8); } else { std.valgrind.memcheck.makeMemDefined(mem8); } }, } } /// Mark a value as sensitive or secret, helping to detect potential side-channel vulnerabilities. /// /// When Valgrind is enabled, this function allows for the detection of conditional jumps or lookups /// that depend on secrets or secret-derived data. Violations are reported by Valgrind as operations /// relying on uninitialized values. /// /// If Valgrind is disabled, it has no effect. /// /// Use this function to verify that cryptographic operations perform constant-time arithmetic on sensitive data, /// ensuring the confidentiality of secrets and preventing information leakage through side channels. pub fn classify(ptr: anytype) void { markSecret(ptr, .classify); } /// Mark a value as non-sensitive or public, indicating it's safe from side-channel attacks. /// /// Signals that a value has been securely processed and is no longer confidential, allowing for /// relaxed handling without fear of information leakage through conditional jumps or lookups. pub fn declassify(ptr: anytype) void { markSecret(ptr, .declassify); } test eql { const random = std.crypto.random; const expect = std.testing.expect; var a: [100]u8 = undefined; var b: [100]u8 = undefined; random.bytes(a[0..]); random.bytes(b[0..]); try expect(!eql([100]u8, a, b)); a = b; try expect(eql([100]u8, a, b)); } test "eql (vectors)" { if (@import("builtin").zig_backend == .stage2_x86_64) return error.SkipZigTest; const random = std.crypto.random; const expect = std.testing.expect; var a: [100]u8 = undefined; var b: [100]u8 = undefined; random.bytes(a[0..]); random.bytes(b[0..]); const v1: @Vector(100, u8) = a; const v2: @Vector(100, u8) = b; try expect(!eql(@Vector(100, u8), v1, v2)); const v3: @Vector(100, u8) = a; try expect(eql(@Vector(100, u8), v1, v3)); } test compare { const expectEqual = std.testing.expectEqual; var a = [_]u8{10} ** 32; var b = [_]u8{10} ** 32; try expectEqual(compare(u8, &a, &b, .big), .eq); try expectEqual(compare(u8, &a, &b, .little), .eq); a[31] = 1; try expectEqual(compare(u8, &a, &b, .big), .lt); try expectEqual(compare(u8, &a, &b, .little), .lt); a[0] = 20; try expectEqual(compare(u8, &a, &b, .big), .gt); try expectEqual(compare(u8, &a, &b, .little), .lt); } test "add and sub" { const expectEqual = std.testing.expectEqual; const expectEqualSlices = std.testing.expectEqualSlices; const random = std.crypto.random; const len = 32; var a: [len]u8 = undefined; var b: [len]u8 = undefined; var c: [len]u8 = undefined; const zero = [_]u8{0} ** len; var iterations: usize = 100; while (iterations != 0) : (iterations -= 1) { random.bytes(&a); random.bytes(&b); const endian = if (iterations % 2 == 0) Endian.big else Endian.little; _ = sub(u8, &a, &b, &c, endian); // a-b _ = add(u8, &c, &b, &c, endian); // (a-b)+b try expectEqualSlices(u8, &c, &a); const borrow = sub(u8, &c, &a, &c, endian); // ((a-b)+b)-a try expectEqualSlices(u8, &c, &zero); try expectEqual(borrow, false); } } test classify { const random = std.crypto.random; const expect = std.testing.expect; var secret: [32]u8 = undefined; random.bytes(&secret); // Input of the hash function is marked as secret classify(&secret); var out: [32]u8 = undefined; std.crypto.hash.sha3.TurboShake128(null).hash(&secret, &out, .{}); // Output of the hash function is derived from secret data, so // it will automatically be considered secret as well. But it can be // declassified; the input itself will still be considered secret. declassify(&out); // Comparing public data in non-constant time is acceptable. try expect(!std.mem.eql(u8, &out, &[_]u8{0} ** out.len)); // Comparing secret data must be done in constant time. The result // is going to be considered as secret as well. var res = std.crypto.utils.timingSafeEql([32]u8, out, secret); // If we want to make a conditional jump based on a secret, // it has to be declassified. declassify(&res); try expect(!res); // Once a secret has been declassified, a comparison in // non-constant time is fine. declassify(&secret); try expect(!std.mem.eql(u8, &out, &secret)); }