struct Dwarf [src]

Alias for std.debug.Dwarf

Implements parsing, decoding, and caching of DWARF information. This API does not assume the current executable is itself the thing being debugged, however, it does assume the debug info has the same CPU architecture and OS as the current executable. It is planned to remove this limitation. For unopinionated types and bits, see std.dwarf.

Fields

endian: std.builtin.Endian
sections: SectionArray = null_section_array
is_macho: bool
abbrev_table_list: std.ArrayListUnmanaged(Abbrev.Table) = .emptyFilled later by the initializer
compile_unit_list: std.ArrayListUnmanaged(CompileUnit) = .emptyFilled later by the initializer
func_list: std.ArrayListUnmanaged(Func) = .emptyFilled later by the initializer
eh_frame_hdr: ?ExceptionFrameHeader = nullStarts out non-null if the .eh_frame_hdr section is present. May become null later if we find that .eh_frame_hdr is incomplete.
cie_map: std.AutoArrayHashMapUnmanaged(u64, CommonInformationEntry) = .emptyThese lookup tables are only used if eh_frame_hdr is null
fde_list: std.ArrayListUnmanaged(FrameDescriptionEntry) = .emptySorted by start_pc
ranges: std.ArrayListUnmanaged(Range) = .emptyPopulated by populateRanges.

Members

Source

//! Implements parsing, decoding, and caching of DWARF information. //! //! This API does not assume the current executable is itself the thing being //! debugged, however, it does assume the debug info has the same CPU //! architecture and OS as the current executable. It is planned to remove this //! limitation. //! //! For unopinionated types and bits, see `std.dwarf`. const builtin = @import("builtin"); const native_endian = builtin.cpu.arch.endian(); const std = @import("../std.zig"); const Allocator = std.mem.Allocator; const elf = std.elf; const mem = std.mem; const DW = std.dwarf; const AT = DW.AT; const EH = DW.EH; const FORM = DW.FORM; const Format = DW.Format; const RLE = DW.RLE; const UT = DW.UT; const assert = std.debug.assert; const cast = std.math.cast; const maxInt = std.math.maxInt; const MemoryAccessor = std.debug.MemoryAccessor; const Path = std.Build.Cache.Path; const FixedBufferReader = std.debug.FixedBufferReader; const Dwarf = @This(); pub const expression = @import("Dwarf/expression.zig"); pub const abi = @import("Dwarf/abi.zig"); pub const call_frame = @import("Dwarf/call_frame.zig"); /// Useful to temporarily enable while working on this file. const debug_debug_mode = false; endian: std.builtin.Endian, sections: SectionArray = null_section_array, is_macho: bool, /// Filled later by the initializer abbrev_table_list: std.ArrayListUnmanaged(Abbrev.Table) = .empty, /// Filled later by the initializer compile_unit_list: std.ArrayListUnmanaged(CompileUnit) = .empty, /// Filled later by the initializer func_list: std.ArrayListUnmanaged(Func) = .empty, /// Starts out non-`null` if the `.eh_frame_hdr` section is present. May become `null` later if we /// find that `.eh_frame_hdr` is incomplete. eh_frame_hdr: ?ExceptionFrameHeader = null, /// These lookup tables are only used if `eh_frame_hdr` is null cie_map: std.AutoArrayHashMapUnmanaged(u64, CommonInformationEntry) = .empty, /// Sorted by start_pc fde_list: std.ArrayListUnmanaged(FrameDescriptionEntry) = .empty, /// Populated by `populateRanges`. ranges: std.ArrayListUnmanaged(Range) = .empty, pub const Range = struct { start: u64, end: u64, /// Index into `compile_unit_list`. compile_unit_index: usize, }; pub const Section = struct { data: []const u8, // Module-relative virtual address. // Only set if the section data was loaded from disk. virtual_address: ?usize = null, // If `data` is owned by this Dwarf. owned: bool, pub const Id = enum { debug_info, debug_abbrev, debug_str, debug_str_offsets, debug_line, debug_line_str, debug_ranges, debug_loclists, debug_rnglists, debug_addr, debug_names, debug_frame, eh_frame, eh_frame_hdr, }; // For sections that are not memory mapped by the loader, this is an offset // from `data.ptr` to where the section would have been mapped. Otherwise, // `data` is directly backed by the section and the offset is zero. pub fn virtualOffset(self: Section, base_address: usize) i64 { return if (self.virtual_address) |va| @as(i64, @intCast(base_address + va)) - @as(i64, @intCast(@intFromPtr(self.data.ptr))) else 0; } }; pub const Abbrev = struct { code: u64, tag_id: u64, has_children: bool, attrs: []Attr, fn deinit(abbrev: *Abbrev, allocator: Allocator) void { allocator.free(abbrev.attrs); abbrev.* = undefined; } const Attr = struct { id: u64, form_id: u64, /// Only valid if form_id is .implicit_const payload: i64, }; const Table = struct { // offset from .debug_abbrev offset: u64, abbrevs: []Abbrev, fn deinit(table: *Table, allocator: Allocator) void { for (table.abbrevs) |*abbrev| { abbrev.deinit(allocator); } allocator.free(table.abbrevs); table.* = undefined; } fn get(table: *const Table, abbrev_code: u64) ?*const Abbrev { return for (table.abbrevs) |*abbrev| { if (abbrev.code == abbrev_code) break abbrev; } else null; } }; }; pub const CompileUnit = struct { version: u16, format: Format, die: Die, pc_range: ?PcRange, str_offsets_base: usize, addr_base: usize, rnglists_base: usize, loclists_base: usize, frame_base: ?*const FormValue, src_loc_cache: ?SrcLocCache, pub const SrcLocCache = struct { line_table: LineTable, directories: []const FileEntry, files: []FileEntry, version: u16, pub const LineTable = std.AutoArrayHashMapUnmanaged(u64, LineEntry); pub const LineEntry = struct { line: u32, column: u32, /// Offset by 1 depending on whether Dwarf version is >= 5. file: u32, pub const invalid: LineEntry = .{ .line = undefined, .column = undefined, .file = std.math.maxInt(u32), }; pub fn isInvalid(le: LineEntry) bool { return le.file == invalid.file; } }; pub fn findSource(slc: *const SrcLocCache, address: u64) !LineEntry { const index = std.sort.upperBound(u64, slc.line_table.keys(), address, struct { fn order(context: u64, item: u64) std.math.Order { return std.math.order(context, item); } }.order); if (index == 0) return missing(); return slc.line_table.values()[index - 1]; } }; }; pub const FormValue = union(enum) { addr: u64, addrx: usize, block: []const u8, udata: u64, data16: *const [16]u8, sdata: i64, exprloc: []const u8, flag: bool, sec_offset: u64, ref: u64, ref_addr: u64, string: [:0]const u8, strp: u64, strx: usize, line_strp: u64, loclistx: u64, rnglistx: u64, fn getString(fv: FormValue, di: Dwarf) ![:0]const u8 { switch (fv) { .string => |s| return s, .strp => |off| return di.getString(off), .line_strp => |off| return di.getLineString(off), else => return bad(), } } fn getUInt(fv: FormValue, comptime U: type) !U { return switch (fv) { inline .udata, .sdata, .sec_offset, => |c| cast(U, c) orelse bad(), else => bad(), }; } }; pub const Die = struct { tag_id: u64, has_children: bool, attrs: []Attr, const Attr = struct { id: u64, value: FormValue, }; fn deinit(self: *Die, allocator: Allocator) void { allocator.free(self.attrs); self.* = undefined; } fn getAttr(self: *const Die, id: u64) ?*const FormValue { for (self.attrs) |*attr| { if (attr.id == id) return &attr.value; } return null; } fn getAttrAddr( self: *const Die, di: *const Dwarf, id: u64, compile_unit: CompileUnit, ) error{ InvalidDebugInfo, MissingDebugInfo }!u64 { const form_value = self.getAttr(id) orelse return error.MissingDebugInfo; return switch (form_value.*) { .addr => |value| value, .addrx => |index| di.readDebugAddr(compile_unit, index), else => bad(), }; } fn getAttrSecOffset(self: *const Die, id: u64) !u64 { const form_value = self.getAttr(id) orelse return error.MissingDebugInfo; return form_value.getUInt(u64); } fn getAttrUnsignedLe(self: *const Die, id: u64) !u64 { const form_value = self.getAttr(id) orelse return error.MissingDebugInfo; return switch (form_value.*) { .Const => |value| value.asUnsignedLe(), else => bad(), }; } fn getAttrRef(self: *const Die, id: u64, unit_offset: u64, unit_len: u64) !u64 { const form_value = self.getAttr(id) orelse return error.MissingDebugInfo; return switch (form_value.*) { .ref => |offset| if (offset < unit_len) unit_offset + offset else bad(), .ref_addr => |addr| addr, else => bad(), }; } pub fn getAttrString( self: *const Die, di: *Dwarf, id: u64, opt_str: ?[]const u8, compile_unit: CompileUnit, ) error{ InvalidDebugInfo, MissingDebugInfo }![]const u8 { const form_value = self.getAttr(id) orelse return error.MissingDebugInfo; switch (form_value.*) { .string => |value| return value, .strp => |offset| return di.getString(offset), .strx => |index| { const debug_str_offsets = di.section(.debug_str_offsets) orelse return bad(); if (compile_unit.str_offsets_base == 0) return bad(); switch (compile_unit.format) { .@"32" => { const byte_offset = compile_unit.str_offsets_base + 4 * index; if (byte_offset + 4 > debug_str_offsets.len) return bad(); const offset = mem.readInt(u32, debug_str_offsets[byte_offset..][0..4], di.endian); return getStringGeneric(opt_str, offset); }, .@"64" => { const byte_offset = compile_unit.str_offsets_base + 8 * index; if (byte_offset + 8 > debug_str_offsets.len) return bad(); const offset = mem.readInt(u64, debug_str_offsets[byte_offset..][0..8], di.endian); return getStringGeneric(opt_str, offset); }, } }, .line_strp => |offset| return di.getLineString(offset), else => return bad(), } } }; /// This represents the decoded .eh_frame_hdr header pub const ExceptionFrameHeader = struct { eh_frame_ptr: usize, table_enc: u8, fde_count: usize, entries: []const u8, pub fn entrySize(table_enc: u8) !u8 { return switch (table_enc & EH.PE.type_mask) { EH.PE.udata2, EH.PE.sdata2, => 4, EH.PE.udata4, EH.PE.sdata4, => 8, EH.PE.udata8, EH.PE.sdata8, => 16, // This is a binary search table, so all entries must be the same length else => return bad(), }; } fn isValidPtr( self: ExceptionFrameHeader, comptime T: type, ptr: usize, ma: *MemoryAccessor, eh_frame_len: ?usize, ) bool { if (eh_frame_len) |len| { return ptr >= self.eh_frame_ptr and ptr <= self.eh_frame_ptr + len - @sizeOf(T); } else { return ma.load(T, ptr) != null; } } /// Find an entry by binary searching the eh_frame_hdr section. /// /// Since the length of the eh_frame section (`eh_frame_len`) may not be known by the caller, /// MemoryAccessor will be used to verify readability of the header entries. /// If `eh_frame_len` is provided, then these checks can be skipped. pub fn findEntry( self: ExceptionFrameHeader, ma: *MemoryAccessor, eh_frame_len: ?usize, eh_frame_hdr_ptr: usize, pc: usize, cie: *CommonInformationEntry, fde: *FrameDescriptionEntry, ) !void { const entry_size = try entrySize(self.table_enc); var left: usize = 0; var len: usize = self.fde_count; var fbr: FixedBufferReader = .{ .buf = self.entries, .endian = native_endian }; while (len > 1) { const mid = left + len / 2; fbr.pos = mid * entry_size; const pc_begin = try readEhPointer(&fbr, self.table_enc, @sizeOf(usize), .{ .pc_rel_base = @intFromPtr(&self.entries[fbr.pos]), .follow_indirect = true, .data_rel_base = eh_frame_hdr_ptr, }) orelse return bad(); if (pc < pc_begin) { len /= 2; } else { left = mid; if (pc == pc_begin) break; len -= len / 2; } } if (len == 0) return bad(); fbr.pos = left * entry_size; // Read past the pc_begin field of the entry _ = try readEhPointer(&fbr, self.table_enc, @sizeOf(usize), .{ .pc_rel_base = @intFromPtr(&self.entries[fbr.pos]), .follow_indirect = true, .data_rel_base = eh_frame_hdr_ptr, }) orelse return bad(); const fde_ptr = cast(usize, try readEhPointer(&fbr, self.table_enc, @sizeOf(usize), .{ .pc_rel_base = @intFromPtr(&self.entries[fbr.pos]), .follow_indirect = true, .data_rel_base = eh_frame_hdr_ptr, }) orelse return bad()) orelse return bad(); if (fde_ptr < self.eh_frame_ptr) return bad(); // Even if eh_frame_len is not specified, all ranges accssed are checked via MemoryAccessor const eh_frame = @as([*]const u8, @ptrFromInt(self.eh_frame_ptr))[0 .. eh_frame_len orelse maxInt(u32)]; const fde_offset = fde_ptr - self.eh_frame_ptr; var eh_frame_fbr: FixedBufferReader = .{ .buf = eh_frame, .pos = fde_offset, .endian = native_endian, }; const fde_entry_header = try EntryHeader.read(&eh_frame_fbr, if (eh_frame_len == null) ma else null, .eh_frame); if (fde_entry_header.entry_bytes.len > 0 and !self.isValidPtr(u8, @intFromPtr(&fde_entry_header.entry_bytes[fde_entry_header.entry_bytes.len - 1]), ma, eh_frame_len)) return bad(); if (fde_entry_header.type != .fde) return bad(); // CIEs always come before FDEs (the offset is a subtraction), so we can assume this memory is readable const cie_offset = fde_entry_header.type.fde; try eh_frame_fbr.seekTo(cie_offset); const cie_entry_header = try EntryHeader.read(&eh_frame_fbr, if (eh_frame_len == null) ma else null, .eh_frame); if (cie_entry_header.entry_bytes.len > 0 and !self.isValidPtr(u8, @intFromPtr(&cie_entry_header.entry_bytes[cie_entry_header.entry_bytes.len - 1]), ma, eh_frame_len)) return bad(); if (cie_entry_header.type != .cie) return bad(); cie.* = try CommonInformationEntry.parse( cie_entry_header.entry_bytes, 0, true, cie_entry_header.format, .eh_frame, cie_entry_header.length_offset, @sizeOf(usize), native_endian, ); fde.* = try FrameDescriptionEntry.parse( fde_entry_header.entry_bytes, 0, true, cie.*, @sizeOf(usize), native_endian, ); } }; pub const EntryHeader = struct { /// Offset of the length field in the backing buffer length_offset: usize, format: Format, type: union(enum) { cie, /// Value is the offset of the corresponding CIE fde: u64, terminator, }, /// The entry's contents, not including the ID field entry_bytes: []const u8, /// The length of the entry including the ID field, but not the length field itself pub fn entryLength(self: EntryHeader) usize { return self.entry_bytes.len + @as(u8, if (self.format == .@"64") 8 else 4); } /// Reads a header for either an FDE or a CIE, then advances the fbr to the position after the trailing structure. /// `fbr` must be a FixedBufferReader backed by either the .eh_frame or .debug_frame sections. pub fn read( fbr: *FixedBufferReader, opt_ma: ?*MemoryAccessor, dwarf_section: Section.Id, ) !EntryHeader { assert(dwarf_section == .eh_frame or dwarf_section == .debug_frame); const length_offset = fbr.pos; const unit_header = try readUnitHeader(fbr, opt_ma); const unit_length = cast(usize, unit_header.unit_length) orelse return bad(); if (unit_length == 0) return .{ .length_offset = length_offset, .format = unit_header.format, .type = .terminator, .entry_bytes = &.{}, }; const start_offset = fbr.pos; const end_offset = start_offset + unit_length; defer fbr.pos = end_offset; const id = try if (opt_ma) |ma| fbr.readAddressChecked(unit_header.format, ma) else fbr.readAddress(unit_header.format); const entry_bytes = fbr.buf[fbr.pos..end_offset]; const cie_id: u64 = switch (dwarf_section) { .eh_frame => CommonInformationEntry.eh_id, .debug_frame => switch (unit_header.format) { .@"32" => CommonInformationEntry.dwarf32_id, .@"64" => CommonInformationEntry.dwarf64_id, }, else => unreachable, }; return .{ .length_offset = length_offset, .format = unit_header.format, .type = if (id == cie_id) .cie else .{ .fde = switch (dwarf_section) { .eh_frame => try std.math.sub(u64, start_offset, id), .debug_frame => id, else => unreachable, } }, .entry_bytes = entry_bytes, }; } }; pub const CommonInformationEntry = struct { // Used in .eh_frame pub const eh_id = 0; // Used in .debug_frame (DWARF32) pub const dwarf32_id = maxInt(u32); // Used in .debug_frame (DWARF64) pub const dwarf64_id = maxInt(u64); // Offset of the length field of this entry in the eh_frame section. // This is the key that FDEs use to reference CIEs. length_offset: u64, version: u8, address_size: u8, format: Format, // Only present in version 4 segment_selector_size: ?u8, code_alignment_factor: u32, data_alignment_factor: i32, return_address_register: u8, aug_str: []const u8, aug_data: []const u8, lsda_pointer_enc: u8, personality_enc: ?u8, personality_routine_pointer: ?u64, fde_pointer_enc: u8, initial_instructions: []const u8, pub fn isSignalFrame(self: CommonInformationEntry) bool { for (self.aug_str) |c| if (c == 'S') return true; return false; } pub fn addressesSignedWithBKey(self: CommonInformationEntry) bool { for (self.aug_str) |c| if (c == 'B') return true; return false; } pub fn mteTaggedFrame(self: CommonInformationEntry) bool { for (self.aug_str) |c| if (c == 'G') return true; return false; } /// This function expects to read the CIE starting with the version field. /// The returned struct references memory backed by cie_bytes. /// /// See the FrameDescriptionEntry.parse documentation for the description /// of `pc_rel_offset` and `is_runtime`. /// /// `length_offset` specifies the offset of this CIE's length field in the /// .eh_frame / .debug_frame section. pub fn parse( cie_bytes: []const u8, pc_rel_offset: i64, is_runtime: bool, format: Format, dwarf_section: Section.Id, length_offset: u64, addr_size_bytes: u8, endian: std.builtin.Endian, ) !CommonInformationEntry { if (addr_size_bytes > 8) return error.UnsupportedAddrSize; var fbr: FixedBufferReader = .{ .buf = cie_bytes, .endian = endian }; const version = try fbr.readByte(); switch (dwarf_section) { .eh_frame => if (version != 1 and version != 3) return error.UnsupportedDwarfVersion, .debug_frame => if (version != 4) return error.UnsupportedDwarfVersion, else => return error.UnsupportedDwarfSection, } var has_eh_data = false; var has_aug_data = false; var aug_str_len: usize = 0; const aug_str_start = fbr.pos; var aug_byte = try fbr.readByte(); while (aug_byte != 0) : (aug_byte = try fbr.readByte()) { switch (aug_byte) { 'z' => { if (aug_str_len != 0) return bad(); has_aug_data = true; }, 'e' => { if (has_aug_data or aug_str_len != 0) return bad(); if (try fbr.readByte() != 'h') return bad(); has_eh_data = true; }, else => if (has_eh_data) return bad(), } aug_str_len += 1; } if (has_eh_data) { // legacy data created by older versions of gcc - unsupported here for (0..addr_size_bytes) |_| _ = try fbr.readByte(); } const address_size = if (version == 4) try fbr.readByte() else addr_size_bytes; const segment_selector_size = if (version == 4) try fbr.readByte() else null; const code_alignment_factor = try fbr.readUleb128(u32); const data_alignment_factor = try fbr.readIleb128(i32); const return_address_register = if (version == 1) try fbr.readByte() else try fbr.readUleb128(u8); var lsda_pointer_enc: u8 = EH.PE.omit; var personality_enc: ?u8 = null; var personality_routine_pointer: ?u64 = null; var fde_pointer_enc: u8 = EH.PE.absptr; var aug_data: []const u8 = &[_]u8{}; const aug_str = if (has_aug_data) blk: { const aug_data_len = try fbr.readUleb128(usize); const aug_data_start = fbr.pos; aug_data = cie_bytes[aug_data_start..][0..aug_data_len]; const aug_str = cie_bytes[aug_str_start..][0..aug_str_len]; for (aug_str[1..]) |byte| { switch (byte) { 'L' => { lsda_pointer_enc = try fbr.readByte(); }, 'P' => { personality_enc = try fbr.readByte(); personality_routine_pointer = try readEhPointer(&fbr, personality_enc.?, addr_size_bytes, .{ .pc_rel_base = try pcRelBase(@intFromPtr(&cie_bytes[fbr.pos]), pc_rel_offset), .follow_indirect = is_runtime, }); }, 'R' => { fde_pointer_enc = try fbr.readByte(); }, 'S', 'B', 'G' => {}, else => return bad(), } } // aug_data_len can include padding so the CIE ends on an address boundary fbr.pos = aug_data_start + aug_data_len; break :blk aug_str; } else &[_]u8{}; const initial_instructions = cie_bytes[fbr.pos..]; return .{ .length_offset = length_offset, .version = version, .address_size = address_size, .format = format, .segment_selector_size = segment_selector_size, .code_alignment_factor = code_alignment_factor, .data_alignment_factor = data_alignment_factor, .return_address_register = return_address_register, .aug_str = aug_str, .aug_data = aug_data, .lsda_pointer_enc = lsda_pointer_enc, .personality_enc = personality_enc, .personality_routine_pointer = personality_routine_pointer, .fde_pointer_enc = fde_pointer_enc, .initial_instructions = initial_instructions, }; } }; pub const FrameDescriptionEntry = struct { // Offset into eh_frame where the CIE for this FDE is stored cie_length_offset: u64, pc_begin: u64, pc_range: u64, lsda_pointer: ?u64, aug_data: []const u8, instructions: []const u8, /// This function expects to read the FDE starting at the PC Begin field. /// The returned struct references memory backed by `fde_bytes`. /// /// `pc_rel_offset` specifies an offset to be applied to pc_rel_base values /// used when decoding pointers. This should be set to zero if fde_bytes is /// backed by the memory of a .eh_frame / .debug_frame section in the running executable. /// Otherwise, it should be the relative offset to translate addresses from /// where the section is currently stored in memory, to where it *would* be /// stored at runtime: section base addr - backing data base ptr. /// /// Similarly, `is_runtime` specifies this function is being called on a runtime /// section, and so indirect pointers can be followed. pub fn parse( fde_bytes: []const u8, pc_rel_offset: i64, is_runtime: bool, cie: CommonInformationEntry, addr_size_bytes: u8, endian: std.builtin.Endian, ) !FrameDescriptionEntry { if (addr_size_bytes > 8) return error.InvalidAddrSize; var fbr: FixedBufferReader = .{ .buf = fde_bytes, .endian = endian }; const pc_begin = try readEhPointer(&fbr, cie.fde_pointer_enc, addr_size_bytes, .{ .pc_rel_base = try pcRelBase(@intFromPtr(&fde_bytes[fbr.pos]), pc_rel_offset), .follow_indirect = is_runtime, }) orelse return bad(); const pc_range = try readEhPointer(&fbr, cie.fde_pointer_enc, addr_size_bytes, .{ .pc_rel_base = 0, .follow_indirect = false, }) orelse return bad(); var aug_data: []const u8 = &[_]u8{}; const lsda_pointer = if (cie.aug_str.len > 0) blk: { const aug_data_len = try fbr.readUleb128(usize); const aug_data_start = fbr.pos; aug_data = fde_bytes[aug_data_start..][0..aug_data_len]; const lsda_pointer = if (cie.lsda_pointer_enc != EH.PE.omit) try readEhPointer(&fbr, cie.lsda_pointer_enc, addr_size_bytes, .{ .pc_rel_base = try pcRelBase(@intFromPtr(&fde_bytes[fbr.pos]), pc_rel_offset), .follow_indirect = is_runtime, }) else null; fbr.pos = aug_data_start + aug_data_len; break :blk lsda_pointer; } else null; const instructions = fde_bytes[fbr.pos..]; return .{ .cie_length_offset = cie.length_offset, .pc_begin = pc_begin, .pc_range = pc_range, .lsda_pointer = lsda_pointer, .aug_data = aug_data, .instructions = instructions, }; } }; const num_sections = std.enums.directEnumArrayLen(Section.Id, 0); pub const SectionArray = [num_sections]?Section; pub const null_section_array = [_]?Section{null} ** num_sections; pub const OpenError = ScanError; /// Initialize DWARF info. The caller has the responsibility to initialize most /// the `Dwarf` fields before calling. `binary_mem` is the raw bytes of the /// main binary file (not the secondary debug info file). pub fn open(d: *Dwarf, gpa: Allocator) OpenError!void { try d.scanAllFunctions(gpa); try d.scanAllCompileUnits(gpa); } const PcRange = struct { start: u64, end: u64, }; const Func = struct { pc_range: ?PcRange, name: ?[]const u8, }; pub fn section(di: Dwarf, dwarf_section: Section.Id) ?[]const u8 { return if (di.sections[@intFromEnum(dwarf_section)]) |s| s.data else null; } pub fn sectionVirtualOffset(di: Dwarf, dwarf_section: Section.Id, base_address: usize) ?i64 { return if (di.sections[@intFromEnum(dwarf_section)]) |s| s.virtualOffset(base_address) else null; } pub fn deinit(di: *Dwarf, gpa: Allocator) void { for (di.sections) |opt_section| { if (opt_section) |s| if (s.owned) gpa.free(s.data); } for (di.abbrev_table_list.items) |*abbrev| { abbrev.deinit(gpa); } di.abbrev_table_list.deinit(gpa); for (di.compile_unit_list.items) |*cu| { if (cu.src_loc_cache) |*slc| { slc.line_table.deinit(gpa); gpa.free(slc.directories); gpa.free(slc.files); } cu.die.deinit(gpa); } di.compile_unit_list.deinit(gpa); di.func_list.deinit(gpa); di.cie_map.deinit(gpa); di.fde_list.deinit(gpa); di.ranges.deinit(gpa); di.* = undefined; } pub fn getSymbolName(di: *Dwarf, address: u64) ?[]const u8 { for (di.func_list.items) |*func| { if (func.pc_range) |range| { if (address >= range.start and address < range.end) { return func.name; } } } return null; } pub const ScanError = error{ InvalidDebugInfo, MissingDebugInfo, } || Allocator.Error || std.debug.FixedBufferReader.Error; fn scanAllFunctions(di: *Dwarf, allocator: Allocator) ScanError!void { var fbr: FixedBufferReader = .{ .buf = di.section(.debug_info).?, .endian = di.endian }; var this_unit_offset: u64 = 0; while (this_unit_offset < fbr.buf.len) { try fbr.seekTo(this_unit_offset); const unit_header = try readUnitHeader(&fbr, null); if (unit_header.unit_length == 0) return; const next_offset = unit_header.header_length + unit_header.unit_length; const version = try fbr.readInt(u16); if (version < 2 or version > 5) return bad(); var address_size: u8 = undefined; var debug_abbrev_offset: u64 = undefined; if (version >= 5) { const unit_type = try fbr.readInt(u8); if (unit_type != DW.UT.compile) return bad(); address_size = try fbr.readByte(); debug_abbrev_offset = try fbr.readAddress(unit_header.format); } else { debug_abbrev_offset = try fbr.readAddress(unit_header.format); address_size = try fbr.readByte(); } if (address_size != @sizeOf(usize)) return bad(); const abbrev_table = try di.getAbbrevTable(allocator, debug_abbrev_offset); var max_attrs: usize = 0; var zig_padding_abbrev_code: u7 = 0; for (abbrev_table.abbrevs) |abbrev| { max_attrs = @max(max_attrs, abbrev.attrs.len); if (cast(u7, abbrev.code)) |code| { if (abbrev.tag_id == DW.TAG.ZIG_padding and !abbrev.has_children and abbrev.attrs.len == 0) { zig_padding_abbrev_code = code; } } } const attrs_buf = try allocator.alloc(Die.Attr, max_attrs * 3); defer allocator.free(attrs_buf); var attrs_bufs: [3][]Die.Attr = undefined; for (&attrs_bufs, 0..) |*buf, index| buf.* = attrs_buf[index * max_attrs ..][0..max_attrs]; const next_unit_pos = this_unit_offset + next_offset; var compile_unit: CompileUnit = .{ .version = version, .format = unit_header.format, .die = undefined, .pc_range = null, .str_offsets_base = 0, .addr_base = 0, .rnglists_base = 0, .loclists_base = 0, .frame_base = null, .src_loc_cache = null, }; while (true) { fbr.pos = std.mem.indexOfNonePos(u8, fbr.buf, fbr.pos, &.{ zig_padding_abbrev_code, 0, }) orelse fbr.buf.len; if (fbr.pos >= next_unit_pos) break; var die_obj = (try parseDie( &fbr, attrs_bufs[0], abbrev_table, unit_header.format, )) orelse continue; switch (die_obj.tag_id) { DW.TAG.compile_unit => { compile_unit.die = die_obj; compile_unit.die.attrs = attrs_bufs[1][0..die_obj.attrs.len]; @memcpy(compile_unit.die.attrs, die_obj.attrs); compile_unit.str_offsets_base = if (die_obj.getAttr(AT.str_offsets_base)) |fv| try fv.getUInt(usize) else 0; compile_unit.addr_base = if (die_obj.getAttr(AT.addr_base)) |fv| try fv.getUInt(usize) else 0; compile_unit.rnglists_base = if (die_obj.getAttr(AT.rnglists_base)) |fv| try fv.getUInt(usize) else 0; compile_unit.loclists_base = if (die_obj.getAttr(AT.loclists_base)) |fv| try fv.getUInt(usize) else 0; compile_unit.frame_base = die_obj.getAttr(AT.frame_base); }, DW.TAG.subprogram, DW.TAG.inlined_subroutine, DW.TAG.subroutine, DW.TAG.entry_point => { const fn_name = x: { var this_die_obj = die_obj; // Prevent endless loops for (0..3) |_| { if (this_die_obj.getAttr(AT.name)) |_| { break :x try this_die_obj.getAttrString(di, AT.name, di.section(.debug_str), compile_unit); } else if (this_die_obj.getAttr(AT.abstract_origin)) |_| { const after_die_offset = fbr.pos; defer fbr.pos = after_die_offset; // Follow the DIE it points to and repeat const ref_offset = try this_die_obj.getAttrRef(AT.abstract_origin, this_unit_offset, next_offset); try fbr.seekTo(ref_offset); this_die_obj = (try parseDie( &fbr, attrs_bufs[2], abbrev_table, // wrong abbrev table for different cu unit_header.format, )) orelse return bad(); } else if (this_die_obj.getAttr(AT.specification)) |_| { const after_die_offset = fbr.pos; defer fbr.pos = after_die_offset; // Follow the DIE it points to and repeat const ref_offset = try this_die_obj.getAttrRef(AT.specification, this_unit_offset, next_offset); try fbr.seekTo(ref_offset); this_die_obj = (try parseDie( &fbr, attrs_bufs[2], abbrev_table, // wrong abbrev table for different cu unit_header.format, )) orelse return bad(); } else { break :x null; } } break :x null; }; var range_added = if (die_obj.getAttrAddr(di, AT.low_pc, compile_unit)) |low_pc| blk: { if (die_obj.getAttr(AT.high_pc)) |high_pc_value| { const pc_end = switch (high_pc_value.*) { .addr => |value| value, .udata => |offset| low_pc + offset, else => return bad(), }; try di.func_list.append(allocator, .{ .name = fn_name, .pc_range = .{ .start = low_pc, .end = pc_end, }, }); break :blk true; } break :blk false; } else |err| blk: { if (err != error.MissingDebugInfo) return err; break :blk false; }; if (die_obj.getAttr(AT.ranges)) |ranges_value| blk: { var iter = DebugRangeIterator.init(ranges_value, di, &compile_unit) catch |err| { if (err != error.MissingDebugInfo) return err; break :blk; }; while (try iter.next()) |range| { range_added = true; try di.func_list.append(allocator, .{ .name = fn_name, .pc_range = .{ .start = range.start, .end = range.end, }, }); } } if (fn_name != null and !range_added) { try di.func_list.append(allocator, .{ .name = fn_name, .pc_range = null, }); } }, else => {}, } } this_unit_offset += next_offset; } } fn scanAllCompileUnits(di: *Dwarf, allocator: Allocator) ScanError!void { var fbr: FixedBufferReader = .{ .buf = di.section(.debug_info).?, .endian = di.endian }; var this_unit_offset: u64 = 0; var attrs_buf = std.ArrayList(Die.Attr).init(allocator); defer attrs_buf.deinit(); while (this_unit_offset < fbr.buf.len) { try fbr.seekTo(this_unit_offset); const unit_header = try readUnitHeader(&fbr, null); if (unit_header.unit_length == 0) return; const next_offset = unit_header.header_length + unit_header.unit_length; const version = try fbr.readInt(u16); if (version < 2 or version > 5) return bad(); var address_size: u8 = undefined; var debug_abbrev_offset: u64 = undefined; if (version >= 5) { const unit_type = try fbr.readInt(u8); if (unit_type != UT.compile) return bad(); address_size = try fbr.readByte(); debug_abbrev_offset = try fbr.readAddress(unit_header.format); } else { debug_abbrev_offset = try fbr.readAddress(unit_header.format); address_size = try fbr.readByte(); } if (address_size != @sizeOf(usize)) return bad(); const abbrev_table = try di.getAbbrevTable(allocator, debug_abbrev_offset); var max_attrs: usize = 0; for (abbrev_table.abbrevs) |abbrev| { max_attrs = @max(max_attrs, abbrev.attrs.len); } try attrs_buf.resize(max_attrs); var compile_unit_die = (try parseDie( &fbr, attrs_buf.items, abbrev_table, unit_header.format, )) orelse return bad(); if (compile_unit_die.tag_id != DW.TAG.compile_unit) return bad(); compile_unit_die.attrs = try allocator.dupe(Die.Attr, compile_unit_die.attrs); var compile_unit: CompileUnit = .{ .version = version, .format = unit_header.format, .pc_range = null, .die = compile_unit_die, .str_offsets_base = if (compile_unit_die.getAttr(AT.str_offsets_base)) |fv| try fv.getUInt(usize) else 0, .addr_base = if (compile_unit_die.getAttr(AT.addr_base)) |fv| try fv.getUInt(usize) else 0, .rnglists_base = if (compile_unit_die.getAttr(AT.rnglists_base)) |fv| try fv.getUInt(usize) else 0, .loclists_base = if (compile_unit_die.getAttr(AT.loclists_base)) |fv| try fv.getUInt(usize) else 0, .frame_base = compile_unit_die.getAttr(AT.frame_base), .src_loc_cache = null, }; compile_unit.pc_range = x: { if (compile_unit_die.getAttrAddr(di, AT.low_pc, compile_unit)) |low_pc| { if (compile_unit_die.getAttr(AT.high_pc)) |high_pc_value| { const pc_end = switch (high_pc_value.*) { .addr => |value| value, .udata => |offset| low_pc + offset, else => return bad(), }; break :x PcRange{ .start = low_pc, .end = pc_end, }; } else { break :x null; } } else |err| { if (err != error.MissingDebugInfo) return err; break :x null; } }; try di.compile_unit_list.append(allocator, compile_unit); this_unit_offset += next_offset; } } pub fn populateRanges(d: *Dwarf, gpa: Allocator) ScanError!void { assert(d.ranges.items.len == 0); for (d.compile_unit_list.items, 0..) |*cu, cu_index| { if (cu.pc_range) |range| { try d.ranges.append(gpa, .{ .start = range.start, .end = range.end, .compile_unit_index = cu_index, }); continue; } const ranges_value = cu.die.getAttr(AT.ranges) orelse continue; var iter = DebugRangeIterator.init(ranges_value, d, cu) catch continue; while (try iter.next()) |range| { // Not sure why LLVM thinks it's OK to emit these... if (range.start == range.end) continue; try d.ranges.append(gpa, .{ .start = range.start, .end = range.end, .compile_unit_index = cu_index, }); } } std.mem.sortUnstable(Range, d.ranges.items, {}, struct { pub fn lessThan(ctx: void, a: Range, b: Range) bool { _ = ctx; return a.start < b.start; } }.lessThan); } const DebugRangeIterator = struct { base_address: u64, section_type: Section.Id, di: *const Dwarf, compile_unit: *const CompileUnit, fbr: FixedBufferReader, pub fn init(ranges_value: *const FormValue, di: *const Dwarf, compile_unit: *const CompileUnit) !@This() { const section_type = if (compile_unit.version >= 5) Section.Id.debug_rnglists else Section.Id.debug_ranges; const debug_ranges = di.section(section_type) orelse return error.MissingDebugInfo; const ranges_offset = switch (ranges_value.*) { .sec_offset, .udata => |off| off, .rnglistx => |idx| off: { switch (compile_unit.format) { .@"32" => { const offset_loc = @as(usize, @intCast(compile_unit.rnglists_base + 4 * idx)); if (offset_loc + 4 > debug_ranges.len) return bad(); const offset = mem.readInt(u32, debug_ranges[offset_loc..][0..4], di.endian); break :off compile_unit.rnglists_base + offset; }, .@"64" => { const offset_loc = @as(usize, @intCast(compile_unit.rnglists_base + 8 * idx)); if (offset_loc + 8 > debug_ranges.len) return bad(); const offset = mem.readInt(u64, debug_ranges[offset_loc..][0..8], di.endian); break :off compile_unit.rnglists_base + offset; }, } }, else => return bad(), }; // All the addresses in the list are relative to the value // specified by DW_AT.low_pc or to some other value encoded // in the list itself. // If no starting value is specified use zero. const base_address = compile_unit.die.getAttrAddr(di, AT.low_pc, compile_unit.*) catch |err| switch (err) { error.MissingDebugInfo => 0, else => return err, }; return .{ .base_address = base_address, .section_type = section_type, .di = di, .compile_unit = compile_unit, .fbr = .{ .buf = debug_ranges, .pos = cast(usize, ranges_offset) orelse return bad(), .endian = di.endian, }, }; } // Returns the next range in the list, or null if the end was reached. pub fn next(self: *@This()) !?PcRange { switch (self.section_type) { .debug_rnglists => { const kind = try self.fbr.readByte(); switch (kind) { RLE.end_of_list => return null, RLE.base_addressx => { const index = try self.fbr.readUleb128(usize); self.base_address = try self.di.readDebugAddr(self.compile_unit.*, index); return try self.next(); }, RLE.startx_endx => { const start_index = try self.fbr.readUleb128(usize); const start_addr = try self.di.readDebugAddr(self.compile_unit.*, start_index); const end_index = try self.fbr.readUleb128(usize); const end_addr = try self.di.readDebugAddr(self.compile_unit.*, end_index); return .{ .start = start_addr, .end = end_addr, }; }, RLE.startx_length => { const start_index = try self.fbr.readUleb128(usize); const start_addr = try self.di.readDebugAddr(self.compile_unit.*, start_index); const len = try self.fbr.readUleb128(usize); const end_addr = start_addr + len; return .{ .start = start_addr, .end = end_addr, }; }, RLE.offset_pair => { const start_addr = try self.fbr.readUleb128(usize); const end_addr = try self.fbr.readUleb128(usize); // This is the only kind that uses the base address return .{ .start = self.base_address + start_addr, .end = self.base_address + end_addr, }; }, RLE.base_address => { self.base_address = try self.fbr.readInt(usize); return try self.next(); }, RLE.start_end => { const start_addr = try self.fbr.readInt(usize); const end_addr = try self.fbr.readInt(usize); return .{ .start = start_addr, .end = end_addr, }; }, RLE.start_length => { const start_addr = try self.fbr.readInt(usize); const len = try self.fbr.readUleb128(usize); const end_addr = start_addr + len; return .{ .start = start_addr, .end = end_addr, }; }, else => return bad(), } }, .debug_ranges => { const start_addr = try self.fbr.readInt(usize); const end_addr = try self.fbr.readInt(usize); if (start_addr == 0 and end_addr == 0) return null; // This entry selects a new value for the base address if (start_addr == maxInt(usize)) { self.base_address = end_addr; return try self.next(); } return .{ .start = self.base_address + start_addr, .end = self.base_address + end_addr, }; }, else => unreachable, } } }; /// TODO: change this to binary searching the sorted compile unit list pub fn findCompileUnit(di: *const Dwarf, target_address: u64) !*CompileUnit { for (di.compile_unit_list.items) |*compile_unit| { if (compile_unit.pc_range) |range| { if (target_address >= range.start and target_address < range.end) return compile_unit; } const ranges_value = compile_unit.die.getAttr(AT.ranges) orelse continue; var iter = DebugRangeIterator.init(ranges_value, di, compile_unit) catch continue; while (try iter.next()) |range| { if (target_address >= range.start and target_address < range.end) return compile_unit; } } return missing(); } /// Gets an already existing AbbrevTable given the abbrev_offset, or if not found, /// seeks in the stream and parses it. fn getAbbrevTable(di: *Dwarf, allocator: Allocator, abbrev_offset: u64) !*const Abbrev.Table { for (di.abbrev_table_list.items) |*table| { if (table.offset == abbrev_offset) { return table; } } try di.abbrev_table_list.append( allocator, try di.parseAbbrevTable(allocator, abbrev_offset), ); return &di.abbrev_table_list.items[di.abbrev_table_list.items.len - 1]; } fn parseAbbrevTable(di: *Dwarf, allocator: Allocator, offset: u64) !Abbrev.Table { var fbr: FixedBufferReader = .{ .buf = di.section(.debug_abbrev).?, .pos = cast(usize, offset) orelse return bad(), .endian = di.endian, }; var abbrevs = std.ArrayList(Abbrev).init(allocator); defer { for (abbrevs.items) |*abbrev| { abbrev.deinit(allocator); } abbrevs.deinit(); } var attrs = std.ArrayList(Abbrev.Attr).init(allocator); defer attrs.deinit(); while (true) { const code = try fbr.readUleb128(u64); if (code == 0) break; const tag_id = try fbr.readUleb128(u64); const has_children = (try fbr.readByte()) == DW.CHILDREN.yes; while (true) { const attr_id = try fbr.readUleb128(u64); const form_id = try fbr.readUleb128(u64); if (attr_id == 0 and form_id == 0) break; try attrs.append(.{ .id = attr_id, .form_id = form_id, .payload = switch (form_id) { FORM.implicit_const => try fbr.readIleb128(i64), else => undefined, }, }); } try abbrevs.append(.{ .code = code, .tag_id = tag_id, .has_children = has_children, .attrs = try attrs.toOwnedSlice(), }); } return .{ .offset = offset, .abbrevs = try abbrevs.toOwnedSlice(), }; } fn parseDie( fbr: *FixedBufferReader, attrs_buf: []Die.Attr, abbrev_table: *const Abbrev.Table, format: Format, ) ScanError!?Die { const abbrev_code = try fbr.readUleb128(u64); if (abbrev_code == 0) return null; const table_entry = abbrev_table.get(abbrev_code) orelse return bad(); const attrs = attrs_buf[0..table_entry.attrs.len]; for (attrs, table_entry.attrs) |*result_attr, attr| result_attr.* = Die.Attr{ .id = attr.id, .value = try parseFormValue( fbr, attr.form_id, format, attr.payload, ), }; return .{ .tag_id = table_entry.tag_id, .has_children = table_entry.has_children, .attrs = attrs, }; } /// Ensures that addresses in the returned LineTable are monotonically increasing. fn runLineNumberProgram(d: *Dwarf, gpa: Allocator, compile_unit: *CompileUnit) !CompileUnit.SrcLocCache { const compile_unit_cwd = try compile_unit.die.getAttrString(d, AT.comp_dir, d.section(.debug_line_str), compile_unit.*); const line_info_offset = try compile_unit.die.getAttrSecOffset(AT.stmt_list); var fbr: FixedBufferReader = .{ .buf = d.section(.debug_line).?, .endian = d.endian, }; try fbr.seekTo(line_info_offset); const unit_header = try readUnitHeader(&fbr, null); if (unit_header.unit_length == 0) return missing(); const next_offset = unit_header.header_length + unit_header.unit_length; const version = try fbr.readInt(u16); if (version < 2) return bad(); const addr_size: u8, const seg_size: u8 = if (version >= 5) .{ try fbr.readByte(), try fbr.readByte(), } else .{ switch (unit_header.format) { .@"32" => 4, .@"64" => 8, }, 0, }; _ = addr_size; _ = seg_size; const prologue_length = try fbr.readAddress(unit_header.format); const prog_start_offset = fbr.pos + prologue_length; const minimum_instruction_length = try fbr.readByte(); if (minimum_instruction_length == 0) return bad(); if (version >= 4) { const maximum_operations_per_instruction = try fbr.readByte(); _ = maximum_operations_per_instruction; } const default_is_stmt = (try fbr.readByte()) != 0; const line_base = try fbr.readByteSigned(); const line_range = try fbr.readByte(); if (line_range == 0) return bad(); const opcode_base = try fbr.readByte(); const standard_opcode_lengths = try fbr.readBytes(opcode_base - 1); var directories: std.ArrayListUnmanaged(FileEntry) = .empty; defer directories.deinit(gpa); var file_entries: std.ArrayListUnmanaged(FileEntry) = .empty; defer file_entries.deinit(gpa); if (version < 5) { try directories.append(gpa, .{ .path = compile_unit_cwd }); while (true) { const dir = try fbr.readBytesTo(0); if (dir.len == 0) break; try directories.append(gpa, .{ .path = dir }); } while (true) { const file_name = try fbr.readBytesTo(0); if (file_name.len == 0) break; const dir_index = try fbr.readUleb128(u32); const mtime = try fbr.readUleb128(u64); const size = try fbr.readUleb128(u64); try file_entries.append(gpa, .{ .path = file_name, .dir_index = dir_index, .mtime = mtime, .size = size, }); } } else { const FileEntFmt = struct { content_type_code: u16, form_code: u16, }; { var dir_ent_fmt_buf: [10]FileEntFmt = undefined; const directory_entry_format_count = try fbr.readByte(); if (directory_entry_format_count > dir_ent_fmt_buf.len) return bad(); for (dir_ent_fmt_buf[0..directory_entry_format_count]) |*ent_fmt| { ent_fmt.* = .{ .content_type_code = try fbr.readUleb128(u8), .form_code = try fbr.readUleb128(u16), }; } const directories_count = try fbr.readUleb128(usize); for (try directories.addManyAsSlice(gpa, directories_count)) |*e| { e.* = .{ .path = &.{} }; for (dir_ent_fmt_buf[0..directory_entry_format_count]) |ent_fmt| { const form_value = try parseFormValue( &fbr, ent_fmt.form_code, unit_header.format, null, ); switch (ent_fmt.content_type_code) { DW.LNCT.path => e.path = try form_value.getString(d.*), DW.LNCT.directory_index => e.dir_index = try form_value.getUInt(u32), DW.LNCT.timestamp => e.mtime = try form_value.getUInt(u64), DW.LNCT.size => e.size = try form_value.getUInt(u64), DW.LNCT.MD5 => e.md5 = switch (form_value) { .data16 => |data16| data16.*, else => return bad(), }, else => continue, } } } } var file_ent_fmt_buf: [10]FileEntFmt = undefined; const file_name_entry_format_count = try fbr.readByte(); if (file_name_entry_format_count > file_ent_fmt_buf.len) return bad(); for (file_ent_fmt_buf[0..file_name_entry_format_count]) |*ent_fmt| { ent_fmt.* = .{ .content_type_code = try fbr.readUleb128(u16), .form_code = try fbr.readUleb128(u16), }; } const file_names_count = try fbr.readUleb128(usize); try file_entries.ensureUnusedCapacity(gpa, file_names_count); for (try file_entries.addManyAsSlice(gpa, file_names_count)) |*e| { e.* = .{ .path = &.{} }; for (file_ent_fmt_buf[0..file_name_entry_format_count]) |ent_fmt| { const form_value = try parseFormValue( &fbr, ent_fmt.form_code, unit_header.format, null, ); switch (ent_fmt.content_type_code) { DW.LNCT.path => e.path = try form_value.getString(d.*), DW.LNCT.directory_index => e.dir_index = try form_value.getUInt(u32), DW.LNCT.timestamp => e.mtime = try form_value.getUInt(u64), DW.LNCT.size => e.size = try form_value.getUInt(u64), DW.LNCT.MD5 => e.md5 = switch (form_value) { .data16 => |data16| data16.*, else => return bad(), }, else => continue, } } } } var prog = LineNumberProgram.init(default_is_stmt, version); var line_table: CompileUnit.SrcLocCache.LineTable = .{}; errdefer line_table.deinit(gpa); try fbr.seekTo(prog_start_offset); const next_unit_pos = line_info_offset + next_offset; while (fbr.pos < next_unit_pos) { const opcode = try fbr.readByte(); if (opcode == DW.LNS.extended_op) { const op_size = try fbr.readUleb128(u64); if (op_size < 1) return bad(); const sub_op = try fbr.readByte(); switch (sub_op) { DW.LNE.end_sequence => { // The row being added here is an "end" address, meaning // that it does not map to the source location here - // rather it marks the previous address as the last address // that maps to this source location. // In this implementation we don't mark end of addresses. // This is a performance optimization based on the fact // that we don't need to know if an address is missing // source location info; we are only interested in being // able to look up source location info for addresses that // are known to have debug info. //if (debug_debug_mode) assert(!line_table.contains(prog.address)); //try line_table.put(gpa, prog.address, CompileUnit.SrcLocCache.LineEntry.invalid); prog.reset(); }, DW.LNE.set_address => { const addr = try fbr.readInt(usize); prog.address = addr; }, DW.LNE.define_file => { const path = try fbr.readBytesTo(0); const dir_index = try fbr.readUleb128(u32); const mtime = try fbr.readUleb128(u64); const size = try fbr.readUleb128(u64); try file_entries.append(gpa, .{ .path = path, .dir_index = dir_index, .mtime = mtime, .size = size, }); }, else => try fbr.seekForward(op_size - 1), } } else if (opcode >= opcode_base) { // special opcodes const adjusted_opcode = opcode - opcode_base; const inc_addr = minimum_instruction_length * (adjusted_opcode / line_range); const inc_line = @as(i32, line_base) + @as(i32, adjusted_opcode % line_range); prog.line += inc_line; prog.address += inc_addr; try prog.addRow(gpa, &line_table); prog.basic_block = false; } else { switch (opcode) { DW.LNS.copy => { try prog.addRow(gpa, &line_table); prog.basic_block = false; }, DW.LNS.advance_pc => { const arg = try fbr.readUleb128(usize); prog.address += arg * minimum_instruction_length; }, DW.LNS.advance_line => { const arg = try fbr.readIleb128(i64); prog.line += arg; }, DW.LNS.set_file => { const arg = try fbr.readUleb128(usize); prog.file = arg; }, DW.LNS.set_column => { const arg = try fbr.readUleb128(u64); prog.column = arg; }, DW.LNS.negate_stmt => { prog.is_stmt = !prog.is_stmt; }, DW.LNS.set_basic_block => { prog.basic_block = true; }, DW.LNS.const_add_pc => { const inc_addr = minimum_instruction_length * ((255 - opcode_base) / line_range); prog.address += inc_addr; }, DW.LNS.fixed_advance_pc => { const arg = try fbr.readInt(u16); prog.address += arg; }, DW.LNS.set_prologue_end => {}, else => { if (opcode - 1 >= standard_opcode_lengths.len) return bad(); try fbr.seekForward(standard_opcode_lengths[opcode - 1]); }, } } } // Dwarf standard v5, 6.2.5 says // > Within a sequence, addresses and operation pointers may only increase. // However, this is empirically not the case in reality, so we sort here. line_table.sortUnstable(struct { keys: []const u64, pub fn lessThan(ctx: @This(), a_index: usize, b_index: usize) bool { return ctx.keys[a_index] < ctx.keys[b_index]; } }{ .keys = line_table.keys() }); return .{ .line_table = line_table, .directories = try directories.toOwnedSlice(gpa), .files = try file_entries.toOwnedSlice(gpa), .version = version, }; } pub fn populateSrcLocCache(d: *Dwarf, gpa: Allocator, cu: *CompileUnit) ScanError!void { if (cu.src_loc_cache != null) return; cu.src_loc_cache = try runLineNumberProgram(d, gpa, cu); } pub fn getLineNumberInfo( d: *Dwarf, gpa: Allocator, compile_unit: *CompileUnit, target_address: u64, ) !std.debug.SourceLocation { try populateSrcLocCache(d, gpa, compile_unit); const slc = &compile_unit.src_loc_cache.?; const entry = try slc.findSource(target_address); const file_index = entry.file - @intFromBool(slc.version < 5); if (file_index >= slc.files.len) return bad(); const file_entry = &slc.files[file_index]; if (file_entry.dir_index >= slc.directories.len) return bad(); const dir_name = slc.directories[file_entry.dir_index].path; const file_name = try std.fs.path.join(gpa, &.{ dir_name, file_entry.path }); return .{ .line = entry.line, .column = entry.column, .file_name = file_name, }; } fn getString(di: Dwarf, offset: u64) ![:0]const u8 { return getStringGeneric(di.section(.debug_str), offset); } fn getLineString(di: Dwarf, offset: u64) ![:0]const u8 { return getStringGeneric(di.section(.debug_line_str), offset); } fn readDebugAddr(di: Dwarf, compile_unit: CompileUnit, index: u64) !u64 { const debug_addr = di.section(.debug_addr) orelse return bad(); // addr_base points to the first item after the header, however we // need to read the header to know the size of each item. Empirically, // it may disagree with is_64 on the compile unit. // The header is 8 or 12 bytes depending on is_64. if (compile_unit.addr_base < 8) return bad(); const version = mem.readInt(u16, debug_addr[compile_unit.addr_base - 4 ..][0..2], di.endian); if (version != 5) return bad(); const addr_size = debug_addr[compile_unit.addr_base - 2]; const seg_size = debug_addr[compile_unit.addr_base - 1]; const byte_offset = @as(usize, @intCast(compile_unit.addr_base + (addr_size + seg_size) * index)); if (byte_offset + addr_size > debug_addr.len) return bad(); return switch (addr_size) { 1 => debug_addr[byte_offset], 2 => mem.readInt(u16, debug_addr[byte_offset..][0..2], di.endian), 4 => mem.readInt(u32, debug_addr[byte_offset..][0..4], di.endian), 8 => mem.readInt(u64, debug_addr[byte_offset..][0..8], di.endian), else => bad(), }; } /// If `.eh_frame_hdr` is present, then only the header needs to be parsed. Otherwise, `.eh_frame` /// and `.debug_frame` are scanned and a sorted list of FDEs is built for binary searching during /// unwinding. Even if `.eh_frame_hdr` is used, we may find during unwinding that it's incomplete, /// in which case we build the sorted list of FDEs at that point. /// /// See also `scanCieFdeInfo`. pub fn scanAllUnwindInfo(di: *Dwarf, allocator: Allocator, base_address: usize) !void { if (di.section(.eh_frame_hdr)) |eh_frame_hdr| blk: { var fbr: FixedBufferReader = .{ .buf = eh_frame_hdr, .endian = native_endian }; const version = try fbr.readByte(); if (version != 1) break :blk; const eh_frame_ptr_enc = try fbr.readByte(); if (eh_frame_ptr_enc == EH.PE.omit) break :blk; const fde_count_enc = try fbr.readByte(); if (fde_count_enc == EH.PE.omit) break :blk; const table_enc = try fbr.readByte(); if (table_enc == EH.PE.omit) break :blk; const eh_frame_ptr = cast(usize, try readEhPointer(&fbr, eh_frame_ptr_enc, @sizeOf(usize), .{ .pc_rel_base = @intFromPtr(&eh_frame_hdr[fbr.pos]), .follow_indirect = true, }) orelse return bad()) orelse return bad(); const fde_count = cast(usize, try readEhPointer(&fbr, fde_count_enc, @sizeOf(usize), .{ .pc_rel_base = @intFromPtr(&eh_frame_hdr[fbr.pos]), .follow_indirect = true, }) orelse return bad()) orelse return bad(); const entry_size = try ExceptionFrameHeader.entrySize(table_enc); const entries_len = fde_count * entry_size; if (entries_len > eh_frame_hdr.len - fbr.pos) return bad(); di.eh_frame_hdr = .{ .eh_frame_ptr = eh_frame_ptr, .table_enc = table_enc, .fde_count = fde_count, .entries = eh_frame_hdr[fbr.pos..][0..entries_len], }; // No need to scan .eh_frame, we have a binary search table already return; } try di.scanCieFdeInfo(allocator, base_address); } /// Scan `.eh_frame` and `.debug_frame` and build a sorted list of FDEs for binary searching during /// unwinding. pub fn scanCieFdeInfo(di: *Dwarf, allocator: Allocator, base_address: usize) !void { const frame_sections = [2]Section.Id{ .eh_frame, .debug_frame }; for (frame_sections) |frame_section| { if (di.section(frame_section)) |section_data| { var fbr: FixedBufferReader = .{ .buf = section_data, .endian = di.endian }; while (fbr.pos < fbr.buf.len) { const entry_header = try EntryHeader.read(&fbr, null, frame_section); switch (entry_header.type) { .cie => { const cie = try CommonInformationEntry.parse( entry_header.entry_bytes, di.sectionVirtualOffset(frame_section, base_address).?, true, entry_header.format, frame_section, entry_header.length_offset, @sizeOf(usize), di.endian, ); try di.cie_map.put(allocator, entry_header.length_offset, cie); }, .fde => |cie_offset| { const cie = di.cie_map.get(cie_offset) orelse return bad(); const fde = try FrameDescriptionEntry.parse( entry_header.entry_bytes, di.sectionVirtualOffset(frame_section, base_address).?, true, cie, @sizeOf(usize), di.endian, ); try di.fde_list.append(allocator, fde); }, .terminator => break, } } std.mem.sortUnstable(FrameDescriptionEntry, di.fde_list.items, {}, struct { fn lessThan(ctx: void, a: FrameDescriptionEntry, b: FrameDescriptionEntry) bool { _ = ctx; return a.pc_begin < b.pc_begin; } }.lessThan); } } } fn parseFormValue( fbr: *FixedBufferReader, form_id: u64, format: Format, implicit_const: ?i64, ) ScanError!FormValue { return switch (form_id) { FORM.addr => .{ .addr = try fbr.readAddress(switch (@bitSizeOf(usize)) { 32 => .@"32", 64 => .@"64", else => @compileError("unsupported @sizeOf(usize)"), }) }, FORM.addrx1 => .{ .addrx = try fbr.readInt(u8) }, FORM.addrx2 => .{ .addrx = try fbr.readInt(u16) }, FORM.addrx3 => .{ .addrx = try fbr.readInt(u24) }, FORM.addrx4 => .{ .addrx = try fbr.readInt(u32) }, FORM.addrx => .{ .addrx = try fbr.readUleb128(usize) }, FORM.block1, FORM.block2, FORM.block4, FORM.block, => .{ .block = try fbr.readBytes(switch (form_id) { FORM.block1 => try fbr.readInt(u8), FORM.block2 => try fbr.readInt(u16), FORM.block4 => try fbr.readInt(u32), FORM.block => try fbr.readUleb128(usize), else => unreachable, }) }, FORM.data1 => .{ .udata = try fbr.readInt(u8) }, FORM.data2 => .{ .udata = try fbr.readInt(u16) }, FORM.data4 => .{ .udata = try fbr.readInt(u32) }, FORM.data8 => .{ .udata = try fbr.readInt(u64) }, FORM.data16 => .{ .data16 = (try fbr.readBytes(16))[0..16] }, FORM.udata => .{ .udata = try fbr.readUleb128(u64) }, FORM.sdata => .{ .sdata = try fbr.readIleb128(i64) }, FORM.exprloc => .{ .exprloc = try fbr.readBytes(try fbr.readUleb128(usize)) }, FORM.flag => .{ .flag = (try fbr.readByte()) != 0 }, FORM.flag_present => .{ .flag = true }, FORM.sec_offset => .{ .sec_offset = try fbr.readAddress(format) }, FORM.ref1 => .{ .ref = try fbr.readInt(u8) }, FORM.ref2 => .{ .ref = try fbr.readInt(u16) }, FORM.ref4 => .{ .ref = try fbr.readInt(u32) }, FORM.ref8 => .{ .ref = try fbr.readInt(u64) }, FORM.ref_udata => .{ .ref = try fbr.readUleb128(u64) }, FORM.ref_addr => .{ .ref_addr = try fbr.readAddress(format) }, FORM.ref_sig8 => .{ .ref = try fbr.readInt(u64) }, FORM.string => .{ .string = try fbr.readBytesTo(0) }, FORM.strp => .{ .strp = try fbr.readAddress(format) }, FORM.strx1 => .{ .strx = try fbr.readInt(u8) }, FORM.strx2 => .{ .strx = try fbr.readInt(u16) }, FORM.strx3 => .{ .strx = try fbr.readInt(u24) }, FORM.strx4 => .{ .strx = try fbr.readInt(u32) }, FORM.strx => .{ .strx = try fbr.readUleb128(usize) }, FORM.line_strp => .{ .line_strp = try fbr.readAddress(format) }, FORM.indirect => parseFormValue(fbr, try fbr.readUleb128(u64), format, implicit_const), FORM.implicit_const => .{ .sdata = implicit_const orelse return bad() }, FORM.loclistx => .{ .loclistx = try fbr.readUleb128(u64) }, FORM.rnglistx => .{ .rnglistx = try fbr.readUleb128(u64) }, else => { //debug.print("unrecognized form id: {x}\n", .{form_id}); return bad(); }, }; } const FileEntry = struct { path: []const u8, dir_index: u32 = 0, mtime: u64 = 0, size: u64 = 0, md5: [16]u8 = [1]u8{0} ** 16, }; const LineNumberProgram = struct { address: u64, file: usize, line: i64, column: u64, version: u16, is_stmt: bool, basic_block: bool, default_is_stmt: bool, // Reset the state machine following the DWARF specification pub fn reset(self: *LineNumberProgram) void { self.address = 0; self.file = 1; self.line = 1; self.column = 0; self.is_stmt = self.default_is_stmt; self.basic_block = false; } pub fn init(is_stmt: bool, version: u16) LineNumberProgram { return .{ .address = 0, .file = 1, .line = 1, .column = 0, .version = version, .is_stmt = is_stmt, .basic_block = false, .default_is_stmt = is_stmt, }; } pub fn addRow(prog: *LineNumberProgram, gpa: Allocator, table: *CompileUnit.SrcLocCache.LineTable) !void { if (prog.line == 0) { //if (debug_debug_mode) @panic("garbage line data"); return; } if (debug_debug_mode) assert(!table.contains(prog.address)); try table.put(gpa, prog.address, .{ .line = cast(u32, prog.line) orelse maxInt(u32), .column = cast(u32, prog.column) orelse maxInt(u32), .file = cast(u32, prog.file) orelse return bad(), }); } }; const UnitHeader = struct { format: Format, header_length: u4, unit_length: u64, }; fn readUnitHeader(fbr: *FixedBufferReader, opt_ma: ?*MemoryAccessor) ScanError!UnitHeader { return switch (try if (opt_ma) |ma| fbr.readIntChecked(u32, ma) else fbr.readInt(u32)) { 0...0xfffffff0 - 1 => |unit_length| .{ .format = .@"32", .header_length = 4, .unit_length = unit_length, }, 0xfffffff0...0xffffffff - 1 => bad(), 0xffffffff => .{ .format = .@"64", .header_length = 12, .unit_length = try if (opt_ma) |ma| fbr.readIntChecked(u64, ma) else fbr.readInt(u64), }, }; } /// Returns the DWARF register number for an x86_64 register number found in compact unwind info pub fn compactUnwindToDwarfRegNumber(unwind_reg_number: u3) !u8 { return switch (unwind_reg_number) { 1 => 3, // RBX 2 => 12, // R12 3 => 13, // R13 4 => 14, // R14 5 => 15, // R15 6 => 6, // RBP else => error.InvalidUnwindRegisterNumber, }; } /// This function is to make it handy to comment out the return and make it /// into a crash when working on this file. pub fn bad() error{InvalidDebugInfo} { if (debug_debug_mode) @panic("bad dwarf"); return error.InvalidDebugInfo; } fn missing() error{MissingDebugInfo} { if (debug_debug_mode) @panic("missing dwarf"); return error.MissingDebugInfo; } fn getStringGeneric(opt_str: ?[]const u8, offset: u64) ![:0]const u8 { const str = opt_str orelse return bad(); if (offset > str.len) return bad(); const casted_offset = cast(usize, offset) orelse return bad(); // Valid strings always have a terminating zero byte const last = std.mem.indexOfScalarPos(u8, str, casted_offset, 0) orelse return bad(); return str[casted_offset..last :0]; } const EhPointerContext = struct { // The address of the pointer field itself pc_rel_base: u64, // Whether or not to follow indirect pointers. This should only be // used when decoding pointers at runtime using the current process's // debug info follow_indirect: bool, // These relative addressing modes are only used in specific cases, and // might not be available / required in all parsing contexts data_rel_base: ?u64 = null, text_rel_base: ?u64 = null, function_rel_base: ?u64 = null, }; fn readEhPointer(fbr: *FixedBufferReader, enc: u8, addr_size_bytes: u8, ctx: EhPointerContext) !?u64 { if (enc == EH.PE.omit) return null; const value: union(enum) { signed: i64, unsigned: u64, } = switch (enc & EH.PE.type_mask) { EH.PE.absptr => .{ .unsigned = switch (addr_size_bytes) { 2 => try fbr.readInt(u16), 4 => try fbr.readInt(u32), 8 => try fbr.readInt(u64), else => return error.InvalidAddrSize, }, }, EH.PE.uleb128 => .{ .unsigned = try fbr.readUleb128(u64) }, EH.PE.udata2 => .{ .unsigned = try fbr.readInt(u16) }, EH.PE.udata4 => .{ .unsigned = try fbr.readInt(u32) }, EH.PE.udata8 => .{ .unsigned = try fbr.readInt(u64) }, EH.PE.sleb128 => .{ .signed = try fbr.readIleb128(i64) }, EH.PE.sdata2 => .{ .signed = try fbr.readInt(i16) }, EH.PE.sdata4 => .{ .signed = try fbr.readInt(i32) }, EH.PE.sdata8 => .{ .signed = try fbr.readInt(i64) }, else => return bad(), }; const base = switch (enc & EH.PE.rel_mask) { EH.PE.pcrel => ctx.pc_rel_base, EH.PE.textrel => ctx.text_rel_base orelse return error.PointerBaseNotSpecified, EH.PE.datarel => ctx.data_rel_base orelse return error.PointerBaseNotSpecified, EH.PE.funcrel => ctx.function_rel_base orelse return error.PointerBaseNotSpecified, else => null, }; const ptr: u64 = if (base) |b| switch (value) { .signed => |s| @intCast(try std.math.add(i64, s, @as(i64, @intCast(b)))), // absptr can actually contain signed values in some cases (aarch64 MachO) .unsigned => |u| u +% b, } else switch (value) { .signed => |s| @as(u64, @intCast(s)), .unsigned => |u| u, }; if ((enc & EH.PE.indirect) > 0 and ctx.follow_indirect) { if (@sizeOf(usize) != addr_size_bytes) { // See the documentation for `follow_indirect` return error.NonNativeIndirection; } const native_ptr = cast(usize, ptr) orelse return error.PointerOverflow; return switch (addr_size_bytes) { 2, 4, 8 => return @as(*const usize, @ptrFromInt(native_ptr)).*, else => return error.UnsupportedAddrSize, }; } else { return ptr; } } fn pcRelBase(field_ptr: usize, pc_rel_offset: i64) !usize { if (pc_rel_offset < 0) { return std.math.sub(usize, field_ptr, @as(usize, @intCast(-pc_rel_offset))); } else { return std.math.add(usize, field_ptr, @as(usize, @intCast(pc_rel_offset))); } } pub const ElfModule = struct { base_address: usize, dwarf: Dwarf, mapped_memory: []align(std.heap.page_size_min) const u8, external_mapped_memory: ?[]align(std.heap.page_size_min) const u8, pub fn deinit(self: *@This(), allocator: Allocator) void { self.dwarf.deinit(allocator); std.posix.munmap(self.mapped_memory); if (self.external_mapped_memory) |m| std.posix.munmap(m); } pub fn getSymbolAtAddress(self: *@This(), allocator: Allocator, address: usize) !std.debug.Symbol { // Translate the VA into an address into this object const relocated_address = address - self.base_address; return self.dwarf.getSymbol(allocator, relocated_address); } pub fn getDwarfInfoForAddress(self: *@This(), allocator: Allocator, address: usize) !?*Dwarf { _ = allocator; _ = address; return &self.dwarf; } pub const LoadError = error{ InvalidDebugInfo, MissingDebugInfo, InvalidElfMagic, InvalidElfVersion, InvalidElfEndian, /// TODO: implement this and then remove this error code UnimplementedDwarfForeignEndian, /// The debug info may be valid but this implementation uses memory /// mapping which limits things to usize. If the target debug info is /// 64-bit and host is 32-bit, there may be debug info that is not /// supportable using this method. Overflow, PermissionDenied, LockedMemoryLimitExceeded, MemoryMappingNotSupported, } || Allocator.Error || std.fs.File.OpenError || OpenError; /// Reads debug info from an already mapped ELF file. /// /// If the required sections aren't present but a reference to external debug /// info is, then this this function will recurse to attempt to load the debug /// sections from an external file. pub fn load( gpa: Allocator, mapped_mem: []align(std.heap.page_size_min) const u8, build_id: ?[]const u8, expected_crc: ?u32, parent_sections: *Dwarf.SectionArray, parent_mapped_mem: ?[]align(std.heap.page_size_min) const u8, elf_filename: ?[]const u8, ) LoadError!Dwarf.ElfModule { if (expected_crc) |crc| if (crc != std.hash.crc.Crc32.hash(mapped_mem)) return error.InvalidDebugInfo; const hdr: *const elf.Ehdr = @ptrCast(&mapped_mem[0]); if (!mem.eql(u8, hdr.e_ident[0..4], elf.MAGIC)) return error.InvalidElfMagic; if (hdr.e_ident[elf.EI_VERSION] != 1) return error.InvalidElfVersion; const endian: std.builtin.Endian = switch (hdr.e_ident[elf.EI_DATA]) { elf.ELFDATA2LSB => .little, elf.ELFDATA2MSB => .big, else => return error.InvalidElfEndian, }; if (endian != native_endian) return error.UnimplementedDwarfForeignEndian; const shoff = hdr.e_shoff; const str_section_off = shoff + @as(u64, hdr.e_shentsize) * @as(u64, hdr.e_shstrndx); const str_shdr: *const elf.Shdr = @ptrCast(@alignCast(&mapped_mem[cast(usize, str_section_off) orelse return error.Overflow])); const header_strings = mapped_mem[str_shdr.sh_offset..][0..str_shdr.sh_size]; const shdrs = @as( [*]const elf.Shdr, @ptrCast(@alignCast(&mapped_mem[shoff])), )[0..hdr.e_shnum]; var sections: Dwarf.SectionArray = Dwarf.null_section_array; // Combine section list. This takes ownership over any owned sections from the parent scope. for (parent_sections, §ions) |*parent, *section_elem| { if (parent.*) |*p| { section_elem.* = p.*; p.owned = false; } } errdefer for (sections) |opt_section| if (opt_section) |s| if (s.owned) gpa.free(s.data); var separate_debug_filename: ?[]const u8 = null; var separate_debug_crc: ?u32 = null; for (shdrs) |*shdr| { if (shdr.sh_type == elf.SHT_NULL or shdr.sh_type == elf.SHT_NOBITS) continue; const name = mem.sliceTo(header_strings[shdr.sh_name..], 0); if (mem.eql(u8, name, ".gnu_debuglink")) { const gnu_debuglink = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size); const debug_filename = mem.sliceTo(@as([*:0]const u8, @ptrCast(gnu_debuglink.ptr)), 0); const crc_offset = mem.alignForward(usize, debug_filename.len + 1, 4); const crc_bytes = gnu_debuglink[crc_offset..][0..4]; separate_debug_crc = mem.readInt(u32, crc_bytes, native_endian); separate_debug_filename = debug_filename; continue; } var section_index: ?usize = null; inline for (@typeInfo(Dwarf.Section.Id).@"enum".fields, 0..) |sect, i| { if (mem.eql(u8, "." ++ sect.name, name)) section_index = i; } if (section_index == null) continue; if (sections[section_index.?] != null) continue; const section_bytes = try chopSlice(mapped_mem, shdr.sh_offset, shdr.sh_size); sections[section_index.?] = if ((shdr.sh_flags & elf.SHF_COMPRESSED) > 0) blk: { var section_stream = std.io.fixedBufferStream(section_bytes); const section_reader = section_stream.reader(); const chdr = section_reader.readStruct(elf.Chdr) catch continue; if (chdr.ch_type != .ZLIB) continue; var zlib_stream = std.compress.zlib.decompressor(section_reader); const decompressed_section = try gpa.alloc(u8, chdr.ch_size); errdefer gpa.free(decompressed_section); const read = zlib_stream.reader().readAll(decompressed_section) catch continue; assert(read == decompressed_section.len); break :blk .{ .data = decompressed_section, .virtual_address = shdr.sh_addr, .owned = true, }; } else .{ .data = section_bytes, .virtual_address = shdr.sh_addr, .owned = false, }; } const missing_debug_info = sections[@intFromEnum(Dwarf.Section.Id.debug_info)] == null or sections[@intFromEnum(Dwarf.Section.Id.debug_abbrev)] == null or sections[@intFromEnum(Dwarf.Section.Id.debug_str)] == null or sections[@intFromEnum(Dwarf.Section.Id.debug_line)] == null; // Attempt to load debug info from an external file // See: https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html if (missing_debug_info) { // Only allow one level of debug info nesting if (parent_mapped_mem) |_| { return error.MissingDebugInfo; } // $XDG_CACHE_HOME/debuginfod_client//debuginfo // This only opportunisticly tries to load from the debuginfod cache, but doesn't try to populate it. // One can manually run `debuginfod-find debuginfo PATH` to download the symbols if (build_id) |id| blk: { var debuginfod_dir: std.fs.Dir = switch (builtin.os.tag) { .wasi, .windows => break :blk, else => dir: { if (std.posix.getenv("DEBUGINFOD_CACHE_PATH")) |path| { break :dir std.fs.openDirAbsolute(path, .{}) catch break :blk; } if (std.posix.getenv("XDG_CACHE_HOME")) |cache_path| { if (cache_path.len > 0) { const path = std.fs.path.join(gpa, &[_][]const u8{ cache_path, "debuginfod_client" }) catch break :blk; defer gpa.free(path); break :dir std.fs.openDirAbsolute(path, .{}) catch break :blk; } } if (std.posix.getenv("HOME")) |home_path| { const path = std.fs.path.join(gpa, &[_][]const u8{ home_path, ".cache", "debuginfod_client" }) catch break :blk; defer gpa.free(path); break :dir std.fs.openDirAbsolute(path, .{}) catch break :blk; } break :blk; }, }; defer debuginfod_dir.close(); const filename = std.fmt.allocPrint( gpa, "{s}/debuginfo", .{std.fmt.fmtSliceHexLower(id)}, ) catch break :blk; defer gpa.free(filename); const path: Path = .{ .root_dir = .{ .path = null, .handle = debuginfod_dir }, .sub_path = filename, }; return loadPath(gpa, path, null, separate_debug_crc, §ions, mapped_mem) catch break :blk; } const global_debug_directories = [_][]const u8{ "/usr/lib/debug", }; // /.build-id/<2-character id prefix>/.debug if (build_id) |id| blk: { if (id.len < 3) break :blk; // Either md5 (16 bytes) or sha1 (20 bytes) are used here in practice const extension = ".debug"; var id_prefix_buf: [2]u8 = undefined; var filename_buf: [38 + extension.len]u8 = undefined; _ = std.fmt.bufPrint(&id_prefix_buf, "{s}", .{std.fmt.fmtSliceHexLower(id[0..1])}) catch unreachable; const filename = std.fmt.bufPrint( &filename_buf, "{s}" ++ extension, .{std.fmt.fmtSliceHexLower(id[1..])}, ) catch break :blk; for (global_debug_directories) |global_directory| { const path: Path = .{ .root_dir = std.Build.Cache.Directory.cwd(), .sub_path = try std.fs.path.join(gpa, &.{ global_directory, ".build-id", &id_prefix_buf, filename, }), }; defer gpa.free(path.sub_path); return loadPath(gpa, path, null, separate_debug_crc, §ions, mapped_mem) catch continue; } } // use the path from .gnu_debuglink, in the same search order as gdb if (separate_debug_filename) |separate_filename| blk: { if (elf_filename != null and mem.eql(u8, elf_filename.?, separate_filename)) return error.MissingDebugInfo; exe_dir: { var exe_dir_buf: [std.fs.max_path_bytes]u8 = undefined; const exe_dir_path = std.fs.selfExeDirPath(&exe_dir_buf) catch break :exe_dir; var exe_dir = std.fs.openDirAbsolute(exe_dir_path, .{}) catch break :exe_dir; defer exe_dir.close(); // / if (loadPath( gpa, .{ .root_dir = .{ .path = null, .handle = exe_dir }, .sub_path = separate_filename, }, null, separate_debug_crc, §ions, mapped_mem, )) |debug_info| { return debug_info; } else |_| {} // /.debug/ const path: Path = .{ .root_dir = .{ .path = null, .handle = exe_dir }, .sub_path = try std.fs.path.join(gpa, &.{ ".debug", separate_filename }), }; defer gpa.free(path.sub_path); if (loadPath(gpa, path, null, separate_debug_crc, §ions, mapped_mem)) |debug_info| return debug_info else |_| {} } var cwd_buf: [std.fs.max_path_bytes]u8 = undefined; const cwd_path = std.posix.realpath(".", &cwd_buf) catch break :blk; // // for (global_debug_directories) |global_directory| { const path: Path = .{ .root_dir = std.Build.Cache.Directory.cwd(), .sub_path = try std.fs.path.join(gpa, &.{ global_directory, cwd_path, separate_filename }), }; defer gpa.free(path.sub_path); if (loadPath(gpa, path, null, separate_debug_crc, §ions, mapped_mem)) |debug_info| return debug_info else |_| {} } } return error.MissingDebugInfo; } var di: Dwarf = .{ .endian = endian, .sections = sections, .is_macho = false, }; try Dwarf.open(&di, gpa); return .{ .base_address = 0, .dwarf = di, .mapped_memory = parent_mapped_mem orelse mapped_mem, .external_mapped_memory = if (parent_mapped_mem != null) mapped_mem else null, }; } pub fn loadPath( gpa: Allocator, elf_file_path: Path, build_id: ?[]const u8, expected_crc: ?u32, parent_sections: *Dwarf.SectionArray, parent_mapped_mem: ?[]align(std.heap.page_size_min) const u8, ) LoadError!Dwarf.ElfModule { const elf_file = elf_file_path.root_dir.handle.openFile(elf_file_path.sub_path, .{}) catch |err| switch (err) { error.FileNotFound => return missing(), else => return err, }; defer elf_file.close(); const end_pos = elf_file.getEndPos() catch return bad(); const file_len = cast(usize, end_pos) orelse return error.Overflow; const mapped_mem = std.posix.mmap( null, file_len, std.posix.PROT.READ, .{ .TYPE = .SHARED }, elf_file.handle, 0, ) catch |err| switch (err) { error.MappingAlreadyExists => unreachable, else => |e| return e, }; errdefer std.posix.munmap(mapped_mem); return load( gpa, mapped_mem, build_id, expected_crc, parent_sections, parent_mapped_mem, elf_file_path.sub_path, ); } }; pub fn getSymbol(di: *Dwarf, allocator: Allocator, address: u64) !std.debug.Symbol { if (di.findCompileUnit(address)) |compile_unit| { return .{ .name = di.getSymbolName(address) orelse "???", .compile_unit_name = compile_unit.die.getAttrString(di, std.dwarf.AT.name, di.section(.debug_str), compile_unit.*) catch |err| switch (err) { error.MissingDebugInfo, error.InvalidDebugInfo => "???", }, .source_location = di.getLineNumberInfo(allocator, compile_unit, address) catch |err| switch (err) { error.MissingDebugInfo, error.InvalidDebugInfo => null, else => return err, }, }; } else |err| switch (err) { error.MissingDebugInfo, error.InvalidDebugInfo => return .{}, else => return err, } } pub fn chopSlice(ptr: []const u8, offset: u64, size: u64) error{Overflow}![]const u8 { const start = cast(usize, offset) orelse return error.Overflow; const end = start + (cast(usize, size) orelse return error.Overflow); return ptr[start..end]; }