struct VirtualMachine [src]

This is a virtual machine that runs DWARF call frame instructions.

Fields

columns: std.ArrayListUnmanaged(Column) = .empty
stack: std.ArrayListUnmanaged(ColumnRange) = .empty
current_row: Row = .{}
cie_row: ?Row = nullThe result of executing the CIE's initial_instructions

Members

Source

pub const VirtualMachine = struct { /// See section 6.4.1 of the DWARF5 specification for details on each const RegisterRule = union(enum) { // The spec says that the default rule for each column is the undefined rule. // However, it also allows ABI / compiler authors to specify alternate defaults, so // there is a distinction made here. default: void, undefined: void, same_value: void, // offset(N) offset: i64, // val_offset(N) val_offset: i64, // register(R) register: u8, // expression(E) expression: []const u8, // val_expression(E) val_expression: []const u8, // Augmenter-defined rule architectural: void, }; /// Each row contains unwinding rules for a set of registers. pub const Row = struct { /// Offset from `FrameDescriptionEntry.pc_begin` offset: u64 = 0, /// Special-case column that defines the CFA (Canonical Frame Address) rule. /// The register field of this column defines the register that CFA is derived from. cfa: Column = .{}, /// The register fields in these columns define the register the rule applies to. columns: ColumnRange = .{}, /// Indicates that the next write to any column in this row needs to copy /// the backing column storage first, as it may be referenced by previous rows. copy_on_write: bool = false, }; pub const Column = struct { register: ?u8 = null, rule: RegisterRule = .{ .default = {} }, /// Resolves the register rule and places the result into `out` (see regBytes) pub fn resolveValue( self: Column, context: *SelfInfo.UnwindContext, expression_context: std.debug.Dwarf.expression.Context, ma: *std.debug.MemoryAccessor, out: []u8, ) !void { switch (self.rule) { .default => { const register = self.register orelse return error.InvalidRegister; try getRegDefaultValue(register, context, out); }, .undefined => { @memset(out, undefined); }, .same_value => { // TODO: This copy could be eliminated if callers always copy the state then call this function to update it const register = self.register orelse return error.InvalidRegister; const src = try regBytes(context.thread_context, register, context.reg_context); if (src.len != out.len) return error.RegisterSizeMismatch; @memcpy(out, src); }, .offset => |offset| { if (context.cfa) |cfa| { const addr = try applyOffset(cfa, offset); if (ma.load(usize, addr) == null) return error.InvalidAddress; const ptr: *const usize = @ptrFromInt(addr); mem.writeInt(usize, out[0..@sizeOf(usize)], ptr.*, native_endian); } else return error.InvalidCFA; }, .val_offset => |offset| { if (context.cfa) |cfa| { mem.writeInt(usize, out[0..@sizeOf(usize)], try applyOffset(cfa, offset), native_endian); } else return error.InvalidCFA; }, .register => |register| { const src = try regBytes(context.thread_context, register, context.reg_context); if (src.len != out.len) return error.RegisterSizeMismatch; @memcpy(out, try regBytes(context.thread_context, register, context.reg_context)); }, .expression => |expression| { context.stack_machine.reset(); const value = try context.stack_machine.run(expression, context.allocator, expression_context, context.cfa.?); const addr = if (value) |v| blk: { if (v != .generic) return error.InvalidExpressionValue; break :blk v.generic; } else return error.NoExpressionValue; if (ma.load(usize, addr) == null) return error.InvalidExpressionAddress; const ptr: *usize = @ptrFromInt(addr); mem.writeInt(usize, out[0..@sizeOf(usize)], ptr.*, native_endian); }, .val_expression => |expression| { context.stack_machine.reset(); const value = try context.stack_machine.run(expression, context.allocator, expression_context, context.cfa.?); if (value) |v| { if (v != .generic) return error.InvalidExpressionValue; mem.writeInt(usize, out[0..@sizeOf(usize)], v.generic, native_endian); } else return error.NoExpressionValue; }, .architectural => return error.UnimplementedRegisterRule, } } }; const ColumnRange = struct { /// Index into `columns` of the first column in this row. start: usize = undefined, len: u8 = 0, }; columns: std.ArrayListUnmanaged(Column) = .empty, stack: std.ArrayListUnmanaged(ColumnRange) = .empty, current_row: Row = .{}, /// The result of executing the CIE's initial_instructions cie_row: ?Row = null, pub fn deinit(self: *VirtualMachine, allocator: std.mem.Allocator) void { self.stack.deinit(allocator); self.columns.deinit(allocator); self.* = undefined; } pub fn reset(self: *VirtualMachine) void { self.stack.clearRetainingCapacity(); self.columns.clearRetainingCapacity(); self.current_row = .{}; self.cie_row = null; } /// Return a slice backed by the row's non-CFA columns pub fn rowColumns(self: VirtualMachine, row: Row) []Column { if (row.columns.len == 0) return &.{}; return self.columns.items[row.columns.start..][0..row.columns.len]; } /// Either retrieves or adds a column for `register` (non-CFA) in the current row. fn getOrAddColumn(self: *VirtualMachine, allocator: std.mem.Allocator, register: u8) !*Column { for (self.rowColumns(self.current_row)) |*c| { if (c.register == register) return c; } if (self.current_row.columns.len == 0) { self.current_row.columns.start = self.columns.items.len; } self.current_row.columns.len += 1; const column = try self.columns.addOne(allocator); column.* = .{ .register = register, }; return column; } /// Runs the CIE instructions, then the FDE instructions. Execution halts /// once the row that corresponds to `pc` is known, and the row is returned. pub fn runTo( self: *VirtualMachine, allocator: std.mem.Allocator, pc: u64, cie: std.debug.Dwarf.CommonInformationEntry, fde: std.debug.Dwarf.FrameDescriptionEntry, addr_size_bytes: u8, endian: std.builtin.Endian, ) !Row { assert(self.cie_row == null); if (pc < fde.pc_begin or pc >= fde.pc_begin + fde.pc_range) return error.AddressOutOfRange; var prev_row: Row = self.current_row; var cie_stream = std.io.fixedBufferStream(cie.initial_instructions); var fde_stream = std.io.fixedBufferStream(fde.instructions); var streams = [_]*std.io.FixedBufferStream([]const u8){ &cie_stream, &fde_stream, }; for (&streams, 0..) |stream, i| { while (stream.pos < stream.buffer.len) { const instruction = try std.debug.Dwarf.call_frame.Instruction.read(stream, addr_size_bytes, endian); prev_row = try self.step(allocator, cie, i == 0, instruction); if (pc < fde.pc_begin + self.current_row.offset) return prev_row; } } return self.current_row; } pub fn runToNative( self: *VirtualMachine, allocator: std.mem.Allocator, pc: u64, cie: std.debug.Dwarf.CommonInformationEntry, fde: std.debug.Dwarf.FrameDescriptionEntry, ) !Row { return self.runTo(allocator, pc, cie, fde, @sizeOf(usize), native_endian); } fn resolveCopyOnWrite(self: *VirtualMachine, allocator: std.mem.Allocator) !void { if (!self.current_row.copy_on_write) return; const new_start = self.columns.items.len; if (self.current_row.columns.len > 0) { try self.columns.ensureUnusedCapacity(allocator, self.current_row.columns.len); self.columns.appendSliceAssumeCapacity(self.rowColumns(self.current_row)); self.current_row.columns.start = new_start; } } /// Executes a single instruction. /// If this instruction is from the CIE, `is_initial` should be set. /// Returns the value of `current_row` before executing this instruction. pub fn step( self: *VirtualMachine, allocator: std.mem.Allocator, cie: std.debug.Dwarf.CommonInformationEntry, is_initial: bool, instruction: Dwarf.call_frame.Instruction, ) !Row { // CIE instructions must be run before FDE instructions assert(!is_initial or self.cie_row == null); if (!is_initial and self.cie_row == null) { self.cie_row = self.current_row; self.current_row.copy_on_write = true; } const prev_row = self.current_row; switch (instruction) { .set_loc => |i| { if (i.address <= self.current_row.offset) return error.InvalidOperation; // TODO: Check cie.segment_selector_size != 0 for DWARFV4 self.current_row.offset = i.address; }, inline .advance_loc, .advance_loc1, .advance_loc2, .advance_loc4, => |i| { self.current_row.offset += i.delta * cie.code_alignment_factor; self.current_row.copy_on_write = true; }, inline .offset, .offset_extended, .offset_extended_sf, => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .offset = @as(i64, @intCast(i.offset)) * cie.data_alignment_factor }; }, inline .restore, .restore_extended, => |i| { try self.resolveCopyOnWrite(allocator); if (self.cie_row) |cie_row| { const column = try self.getOrAddColumn(allocator, i.register); column.rule = for (self.rowColumns(cie_row)) |cie_column| { if (cie_column.register == i.register) break cie_column.rule; } else .{ .default = {} }; } else return error.InvalidOperation; }, .nop => {}, .undefined => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .undefined = {} }; }, .same_value => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .same_value = {} }; }, .register => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .register = i.target_register }; }, .remember_state => { try self.stack.append(allocator, self.current_row.columns); self.current_row.copy_on_write = true; }, .restore_state => { const restored_columns = self.stack.pop() orelse return error.InvalidOperation; self.columns.shrinkRetainingCapacity(self.columns.items.len - self.current_row.columns.len); try self.columns.ensureUnusedCapacity(allocator, restored_columns.len); self.current_row.columns.start = self.columns.items.len; self.current_row.columns.len = restored_columns.len; self.columns.appendSliceAssumeCapacity(self.columns.items[restored_columns.start..][0..restored_columns.len]); }, .def_cfa => |i| { try self.resolveCopyOnWrite(allocator); self.current_row.cfa = .{ .register = i.register, .rule = .{ .val_offset = @intCast(i.offset) }, }; }, .def_cfa_sf => |i| { try self.resolveCopyOnWrite(allocator); self.current_row.cfa = .{ .register = i.register, .rule = .{ .val_offset = i.offset * cie.data_alignment_factor }, }; }, .def_cfa_register => |i| { try self.resolveCopyOnWrite(allocator); if (self.current_row.cfa.register == null or self.current_row.cfa.rule != .val_offset) return error.InvalidOperation; self.current_row.cfa.register = i.register; }, .def_cfa_offset => |i| { try self.resolveCopyOnWrite(allocator); if (self.current_row.cfa.register == null or self.current_row.cfa.rule != .val_offset) return error.InvalidOperation; self.current_row.cfa.rule = .{ .val_offset = @intCast(i.offset), }; }, .def_cfa_offset_sf => |i| { try self.resolveCopyOnWrite(allocator); if (self.current_row.cfa.register == null or self.current_row.cfa.rule != .val_offset) return error.InvalidOperation; self.current_row.cfa.rule = .{ .val_offset = i.offset * cie.data_alignment_factor, }; }, .def_cfa_expression => |i| { try self.resolveCopyOnWrite(allocator); self.current_row.cfa.register = undefined; self.current_row.cfa.rule = .{ .expression = i.block, }; }, .expression => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .expression = i.block, }; }, .val_offset => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .val_offset = @as(i64, @intCast(i.offset)) * cie.data_alignment_factor, }; }, .val_offset_sf => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .val_offset = i.offset * cie.data_alignment_factor, }; }, .val_expression => |i| { try self.resolveCopyOnWrite(allocator); const column = try self.getOrAddColumn(allocator, i.register); column.rule = .{ .val_expression = i.block, }; }, } return prev_row; } }