Function parseFloat [src]

Alias for std.fmt.parse_float.parseFloat

Prototype

pub fn parseFloat(comptime T: type, s: []const u8) ParseFloatError!T

Parameters

T: types: []const u8

Possible Errors

InvalidCharacter

Example

test parseFloat { inline for ([_]type{ f16, f32, f64, f80, f128 }) |T| { try testing.expectError(error.InvalidCharacter, parseFloat(T, "")); try testing.expectError(error.InvalidCharacter, parseFloat(T, " 1")); try testing.expectError(error.InvalidCharacter, parseFloat(T, "1abc")); try testing.expectError(error.InvalidCharacter, parseFloat(T, "+")); try testing.expectError(error.InvalidCharacter, parseFloat(T, "-")); try expectEqual(try parseFloat(T, "0"), 0.0); try expectEqual(try parseFloat(T, "0"), 0.0); try expectEqual(try parseFloat(T, "+0"), 0.0); try expectEqual(try parseFloat(T, "-0"), 0.0); try expectEqual(try parseFloat(T, "0e0"), 0); try expectEqual(try parseFloat(T, "2e3"), 2000.0); try expectEqual(try parseFloat(T, "1e0"), 1.0); try expectEqual(try parseFloat(T, "-2e3"), -2000.0); try expectEqual(try parseFloat(T, "-1e0"), -1.0); try expectEqual(try parseFloat(T, "1.234e3"), 1234); try expect(approxEqAbs(T, try parseFloat(T, "3.141"), 3.141, epsilon)); try expect(approxEqAbs(T, try parseFloat(T, "-3.141"), -3.141, epsilon)); try expectEqual(try parseFloat(T, "1e-5000"), 0); try expectEqual(try parseFloat(T, "1e+5000"), std.math.inf(T)); try expectEqual(try parseFloat(T, "0.4e0066999999999999999999999999999999999999999999999999999"), std.math.inf(T)); try expect(approxEqAbs(T, try parseFloat(T, "0_1_2_3_4_5_6.7_8_9_0_0_0e0_0_1_0"), @as(T, 123456.789000e10), epsilon)); // underscore rule is simple and reduces to "can only occur between two digits" and multiple are not supported. try expectError(error.InvalidCharacter, parseFloat(T, "0123456.789000e_0010")); // cannot occur immediately after exponent try expectError(error.InvalidCharacter, parseFloat(T, "_0123456.789000e0010")); // cannot occur before any digits try expectError(error.InvalidCharacter, parseFloat(T, "0__123456.789000e_0010")); // cannot occur twice in a row try expectError(error.InvalidCharacter, parseFloat(T, "0123456_.789000e0010")); // cannot occur before decimal point try expectError(error.InvalidCharacter, parseFloat(T, "0123456.789000e0010_")); // cannot occur at end of number try expect(approxEqAbs(T, try parseFloat(T, "1e-2"), 0.01, epsilon)); try expect(approxEqAbs(T, try parseFloat(T, "1234e-2"), 12.34, epsilon)); try expect(approxEqAbs(T, try parseFloat(T, "1."), 1, epsilon)); try expect(approxEqAbs(T, try parseFloat(T, "0."), 0, epsilon)); try expect(approxEqAbs(T, try parseFloat(T, ".1"), 0.1, epsilon)); try expect(approxEqAbs(T, try parseFloat(T, ".0"), 0, epsilon)); try expect(approxEqAbs(T, try parseFloat(T, ".1e-1"), 0.01, epsilon)); try expectError(error.InvalidCharacter, parseFloat(T, ".")); // At least one digit is required. try expectError(error.InvalidCharacter, parseFloat(T, ".e1")); // At least one digit is required. try expectError(error.InvalidCharacter, parseFloat(T, "0.e")); // At least one digit is required. try expect(approxEqAbs(T, try parseFloat(T, "123142.1"), 123142.1, epsilon)); try expect(approxEqAbs(T, try parseFloat(T, "-123142.1124"), @as(T, -123142.1124), epsilon)); try expect(approxEqAbs(T, try parseFloat(T, "0.7062146892655368"), @as(T, 0.7062146892655368), epsilon)); try expect(approxEqAbs(T, try parseFloat(T, "2.71828182845904523536"), @as(T, 2.718281828459045), epsilon)); } }

Source

pub fn parseFloat(comptime T: type, s: []const u8) ParseFloatError!T { if (@typeInfo(T) != .float) { @compileError("Cannot parse a float into a non-floating point type."); } if (s.len == 0) { return error.InvalidCharacter; } var i: usize = 0; const negative = s[i] == '-'; if (s[i] == '-' or s[i] == '+') { i += 1; } if (s.len == i) { return error.InvalidCharacter; } const n = parse.parseNumber(T, s[i..], negative) orelse { return parse.parseInfOrNan(T, s[i..], negative) orelse error.InvalidCharacter; }; if (n.hex) { return convertHex(T, n); } if (convertFast(T, n)) |f| { return f; } if (T == f16 or T == f32 or T == f64) { // If significant digits were truncated, then we can have rounding error // only if `mantissa + 1` produces a different result. We also avoid // redundantly using the Eisel-Lemire algorithm if it was unable to // correctly round on the first pass. if (convertEiselLemire(T, n.exponent, n.mantissa)) |bf| { if (!n.many_digits) { return bf.toFloat(T, n.negative); } if (convertEiselLemire(T, n.exponent, n.mantissa + 1)) |bf2| { if (bf.eql(bf2)) { return bf.toFloat(T, n.negative); } } } } // Unable to correctly round the float using the Eisel-Lemire algorithm. // Fallback to a slower, but always correct algorithm. return convertSlow(T, s[i..]).toFloat(T, negative); }