Function int [src]
Integer-to-integer hashing for bit widths <= 256.
Prototype
pub fn int(input: anytype) @TypeOf(input)
Example
test int {
const expectEqual = @import("std").testing.expectEqual;
try expectEqual(0x1, int(@as(u1, 1)));
try expectEqual(0x3, int(@as(u2, 1)));
try expectEqual(0x4, int(@as(u3, 1)));
try expectEqual(0xD6, int(@as(u8, 1)));
try expectEqual(0x2880, int(@as(u16, 1)));
try expectEqual(0x2880, int(@as(i16, 1)));
try expectEqual(0x838380, int(@as(u24, 1)));
try expectEqual(0x42741D6, int(@as(u32, 1)));
try expectEqual(0x42741D6, int(@as(i32, 1)));
try expectEqual(0x71894DE00D9981F, int(@as(u64, 1)));
try expectEqual(0x71894DE00D9981F, int(@as(i64, 1)));
}
Source
pub fn int(input: anytype) @TypeOf(input) {
// This function is only intended for integer types
const info = @typeInfo(@TypeOf(input)).int;
const bits = info.bits;
// Convert input to unsigned integer (easier to deal with)
const Uint = @Type(.{ .int = .{ .bits = bits, .signedness = .unsigned } });
const u_input: Uint = @bitCast(input);
if (bits > 256) @compileError("bit widths > 256 are unsupported, use std.hash.autoHash functionality.");
// For bit widths that don't have a dedicated function, use a heuristic
// construction with a multiplier suited to diffusion -
// a mod 2^bits where a^2 - 46 * a + 1 = 0 mod 2^(bits + 4),
// on Mathematica: bits = 256; BaseForm[Solve[1 - 46 a + a^2 == 0, a, Modulus -> 2^(bits + 4)][[-1]][[1]][[2]], 16]
const mult: Uint = @truncate(0xfac2e27ed2036860a062b5f264d80a512b00aa459b448bf1eca24d41c96f59e5b);
// The bit width of the input integer determines how to hash it
const output = switch (bits) {
0...2 => u_input *% mult,
16 => uint16(u_input),
32 => uint32(u_input),
64 => uint64(u_input),
else => blk: {
var x: Uint = u_input;
inline for (0..4) |_| {
x ^= x >> (bits / 2);
x *%= mult;
}
break :blk x;
},
};
return @bitCast(output);
}