Function int [src]

Integer-to-integer hashing for bit widths <= 256.

Prototype

pub fn int(input: anytype) @TypeOf(input)

Example

test int { const expectEqual = @import("std").testing.expectEqual; try expectEqual(0x1, int(@as(u1, 1))); try expectEqual(0x3, int(@as(u2, 1))); try expectEqual(0x4, int(@as(u3, 1))); try expectEqual(0xD6, int(@as(u8, 1))); try expectEqual(0x2880, int(@as(u16, 1))); try expectEqual(0x2880, int(@as(i16, 1))); try expectEqual(0x838380, int(@as(u24, 1))); try expectEqual(0x42741D6, int(@as(u32, 1))); try expectEqual(0x42741D6, int(@as(i32, 1))); try expectEqual(0x71894DE00D9981F, int(@as(u64, 1))); try expectEqual(0x71894DE00D9981F, int(@as(i64, 1))); }

Source

pub fn int(input: anytype) @TypeOf(input) { // This function is only intended for integer types const info = @typeInfo(@TypeOf(input)).int; const bits = info.bits; // Convert input to unsigned integer (easier to deal with) const Uint = @Type(.{ .int = .{ .bits = bits, .signedness = .unsigned } }); const u_input: Uint = @bitCast(input); if (bits > 256) @compileError("bit widths > 256 are unsupported, use std.hash.autoHash functionality."); // For bit widths that don't have a dedicated function, use a heuristic // construction with a multiplier suited to diffusion - // a mod 2^bits where a^2 - 46 * a + 1 = 0 mod 2^(bits + 4), // on Mathematica: bits = 256; BaseForm[Solve[1 - 46 a + a^2 == 0, a, Modulus -> 2^(bits + 4)][[-1]][[1]][[2]], 16] const mult: Uint = @truncate(0xfac2e27ed2036860a062b5f264d80a512b00aa459b448bf1eca24d41c96f59e5b); // The bit width of the input integer determines how to hash it const output = switch (bits) { 0...2 => u_input *% mult, 16 => uint16(u_input), 32 => uint32(u_input), 64 => uint64(u_input), else => blk: { var x: Uint = u_input; inline for (0..4) |_| { x ^= x >> (bits / 2); x *%= mult; } break :blk x; }, }; return @bitCast(output); }