Type Function GeneralPurposeAllocator [src]
Alias for std.heap.debug_allocator.DebugAllocator
Default initialization of this struct is deprecated; use .init instead.
Prototype
pub fn DebugAllocator(comptime config: Config) type
Parameters
config: Config
Source
pub fn DebugAllocator(comptime config: Config) type {
return struct {
backing_allocator: Allocator = std.heap.page_allocator,
/// Tracks the active bucket, which is the one that has free slots in it.
buckets: [small_bucket_count]?*BucketHeader = [1]?*BucketHeader{null} ** small_bucket_count,
large_allocations: LargeAllocTable = .empty,
total_requested_bytes: @TypeOf(total_requested_bytes_init) = total_requested_bytes_init,
requested_memory_limit: @TypeOf(requested_memory_limit_init) = requested_memory_limit_init,
mutex: @TypeOf(mutex_init) = mutex_init,
const Self = @This();
pub const init: Self = .{};
/// These can be derived from size_class_index but the calculation is nontrivial.
const slot_counts: [small_bucket_count]SlotIndex = init: {
@setEvalBranchQuota(10000);
var result: [small_bucket_count]SlotIndex = undefined;
for (&result, 0..) |*elem, i| elem.* = calculateSlotCount(i);
break :init result;
};
comptime {
assert(math.isPowerOfTwo(page_size));
}
const page_size = config.page_size;
const page_align: mem.Alignment = .fromByteUnits(page_size);
/// Integer type for pointing to slots in a small allocation
const SlotIndex = std.meta.Int(.unsigned, math.log2(page_size) + 1);
const total_requested_bytes_init = if (config.enable_memory_limit) @as(usize, 0) else {};
const requested_memory_limit_init = if (config.enable_memory_limit) @as(usize, math.maxInt(usize)) else {};
const mutex_init = if (config.MutexType) |T|
T{}
else if (config.thread_safe)
std.Thread.Mutex{}
else
DummyMutex{};
const DummyMutex = struct {
inline fn lock(_: *DummyMutex) void {}
inline fn unlock(_: *DummyMutex) void {}
};
const stack_n = config.stack_trace_frames;
const one_trace_size = @sizeOf(usize) * stack_n;
const traces_per_slot = 2;
pub const Error = mem.Allocator.Error;
/// Avoids creating buckets that would only be able to store a small
/// number of slots. Value of 1 means 2 is the minimum slot count.
const minimum_slots_per_bucket_log2 = 1;
const small_bucket_count = math.log2(page_size) - minimum_slots_per_bucket_log2;
const largest_bucket_object_size = 1 << (small_bucket_count - 1);
const LargestSizeClassInt = std.math.IntFittingRange(0, largest_bucket_object_size);
const bucketCompare = struct {
fn compare(a: *BucketHeader, b: *BucketHeader) std.math.Order {
return std.math.order(@intFromPtr(a.page), @intFromPtr(b.page));
}
}.compare;
const LargeAlloc = struct {
bytes: []u8,
requested_size: if (config.enable_memory_limit) usize else void,
stack_addresses: [trace_n][stack_n]usize,
freed: if (config.retain_metadata) bool else void,
alignment: if (config.never_unmap and config.retain_metadata) mem.Alignment else void,
const trace_n = if (config.retain_metadata) traces_per_slot else 1;
fn dumpStackTrace(self: *LargeAlloc, trace_kind: TraceKind) void {
std.debug.dumpStackTrace(self.getStackTrace(trace_kind));
}
fn getStackTrace(self: *LargeAlloc, trace_kind: TraceKind) std.builtin.StackTrace {
assert(@intFromEnum(trace_kind) < trace_n);
const stack_addresses = &self.stack_addresses[@intFromEnum(trace_kind)];
var len: usize = 0;
while (len < stack_n and stack_addresses[len] != 0) {
len += 1;
}
return .{
.instruction_addresses = stack_addresses,
.index = len,
};
}
fn captureStackTrace(self: *LargeAlloc, ret_addr: usize, trace_kind: TraceKind) void {
assert(@intFromEnum(trace_kind) < trace_n);
const stack_addresses = &self.stack_addresses[@intFromEnum(trace_kind)];
collectStackTrace(ret_addr, stack_addresses);
}
};
const LargeAllocTable = std.AutoHashMapUnmanaged(usize, LargeAlloc);
/// Bucket: In memory, in order:
/// * BucketHeader
/// * bucket_used_bits: [N]usize, // 1 bit for every slot
/// -- below only exists when config.safety is true --
/// * requested_sizes: [N]LargestSizeClassInt // 1 int for every slot
/// * log2_ptr_aligns: [N]u8 // 1 byte for every slot
/// -- above only exists when config.safety is true --
/// * stack_trace_addresses: [N]usize, // traces_per_slot for every allocation
const BucketHeader = struct {
allocated_count: SlotIndex,
freed_count: SlotIndex,
prev: ?*BucketHeader,
canary: usize = config.canary,
fn fromPage(page_addr: usize, slot_count: usize) *BucketHeader {
const unaligned = page_addr + page_size - bucketSize(slot_count);
return @ptrFromInt(unaligned & ~(@as(usize, @alignOf(BucketHeader)) - 1));
}
fn usedBits(bucket: *BucketHeader, index: usize) *usize {
const ptr: [*]u8 = @ptrCast(bucket);
const bits: [*]usize = @alignCast(@ptrCast(ptr + @sizeOf(BucketHeader)));
return &bits[index];
}
fn requestedSizes(bucket: *BucketHeader, slot_count: usize) []LargestSizeClassInt {
if (!config.safety) @compileError("requested size is only stored when safety is enabled");
const start_ptr = @as([*]u8, @ptrCast(bucket)) + bucketRequestedSizesStart(slot_count);
const sizes = @as([*]LargestSizeClassInt, @ptrCast(@alignCast(start_ptr)));
return sizes[0..slot_count];
}
fn log2PtrAligns(bucket: *BucketHeader, slot_count: usize) []mem.Alignment {
if (!config.safety) @compileError("requested size is only stored when safety is enabled");
const aligns_ptr = @as([*]u8, @ptrCast(bucket)) + bucketAlignsStart(slot_count);
return @ptrCast(aligns_ptr[0..slot_count]);
}
fn stackTracePtr(
bucket: *BucketHeader,
slot_count: usize,
slot_index: SlotIndex,
trace_kind: TraceKind,
) *[stack_n]usize {
const start_ptr = @as([*]u8, @ptrCast(bucket)) + bucketStackFramesStart(slot_count);
const addr = start_ptr + one_trace_size * traces_per_slot * slot_index +
@intFromEnum(trace_kind) * @as(usize, one_trace_size);
return @ptrCast(@alignCast(addr));
}
fn captureStackTrace(
bucket: *BucketHeader,
ret_addr: usize,
slot_count: usize,
slot_index: SlotIndex,
trace_kind: TraceKind,
) void {
// Initialize them to 0. When determining the count we must look
// for non zero addresses.
const stack_addresses = bucket.stackTracePtr(slot_count, slot_index, trace_kind);
collectStackTrace(ret_addr, stack_addresses);
}
};
pub fn allocator(self: *Self) Allocator {
return .{
.ptr = self,
.vtable = &.{
.alloc = alloc,
.resize = resize,
.remap = remap,
.free = free,
},
};
}
fn bucketStackTrace(
bucket: *BucketHeader,
slot_count: usize,
slot_index: SlotIndex,
trace_kind: TraceKind,
) StackTrace {
const stack_addresses = bucket.stackTracePtr(slot_count, slot_index, trace_kind);
var len: usize = 0;
while (len < stack_n and stack_addresses[len] != 0) {
len += 1;
}
return .{
.instruction_addresses = stack_addresses,
.index = len,
};
}
fn bucketRequestedSizesStart(slot_count: usize) usize {
if (!config.safety) @compileError("requested sizes are not stored unless safety is enabled");
return mem.alignForward(
usize,
@sizeOf(BucketHeader) + usedBitsSize(slot_count),
@alignOf(LargestSizeClassInt),
);
}
fn bucketAlignsStart(slot_count: usize) usize {
if (!config.safety) @compileError("requested sizes are not stored unless safety is enabled");
return bucketRequestedSizesStart(slot_count) + (@sizeOf(LargestSizeClassInt) * slot_count);
}
fn bucketStackFramesStart(slot_count: usize) usize {
const unaligned_start = if (config.safety)
bucketAlignsStart(slot_count) + slot_count
else
@sizeOf(BucketHeader) + usedBitsSize(slot_count);
return mem.alignForward(usize, unaligned_start, @alignOf(usize));
}
fn bucketSize(slot_count: usize) usize {
return bucketStackFramesStart(slot_count) + one_trace_size * traces_per_slot * slot_count;
}
/// This is executed only at compile-time to prepopulate a lookup table.
fn calculateSlotCount(size_class_index: usize) SlotIndex {
const size_class = @as(usize, 1) << @as(Log2USize, @intCast(size_class_index));
var lower: usize = 1 << minimum_slots_per_bucket_log2;
var upper: usize = (page_size - bucketSize(lower)) / size_class;
while (upper > lower) {
const proposed: usize = lower + (upper - lower) / 2;
if (proposed == lower) return lower;
const slots_end = proposed * size_class;
const header_begin = mem.alignForward(usize, slots_end, @alignOf(BucketHeader));
const end = header_begin + bucketSize(proposed);
if (end > page_size) {
upper = proposed - 1;
} else {
lower = proposed;
}
}
const slots_end = lower * size_class;
const header_begin = mem.alignForward(usize, slots_end, @alignOf(BucketHeader));
const end = header_begin + bucketSize(lower);
assert(end <= page_size);
return lower;
}
fn usedBitsCount(slot_count: usize) usize {
return (slot_count + (@bitSizeOf(usize) - 1)) / @bitSizeOf(usize);
}
fn usedBitsSize(slot_count: usize) usize {
return usedBitsCount(slot_count) * @sizeOf(usize);
}
fn detectLeaksInBucket(bucket: *BucketHeader, size_class_index: usize, used_bits_count: usize) bool {
const size_class = @as(usize, 1) << @as(Log2USize, @intCast(size_class_index));
const slot_count = slot_counts[size_class_index];
var leaks = false;
for (0..used_bits_count) |used_bits_byte| {
const used_int = bucket.usedBits(used_bits_byte).*;
if (used_int != 0) {
for (0..@bitSizeOf(usize)) |bit_index_usize| {
const bit_index: Log2USize = @intCast(bit_index_usize);
const is_used = @as(u1, @truncate(used_int >> bit_index)) != 0;
if (is_used) {
const slot_index: SlotIndex = @intCast(used_bits_byte * @bitSizeOf(usize) + bit_index);
const stack_trace = bucketStackTrace(bucket, slot_count, slot_index, .alloc);
const page_addr = @intFromPtr(bucket) & ~(page_size - 1);
const addr = page_addr + slot_index * size_class;
log.err("memory address 0x{x} leaked: {}", .{ addr, stack_trace });
leaks = true;
}
}
}
}
return leaks;
}
/// Emits log messages for leaks and then returns whether there were any leaks.
pub fn detectLeaks(self: *Self) bool {
var leaks = false;
for (self.buckets, 0..) |init_optional_bucket, size_class_index| {
var optional_bucket = init_optional_bucket;
const slot_count = slot_counts[size_class_index];
const used_bits_count = usedBitsCount(slot_count);
while (optional_bucket) |bucket| {
leaks = detectLeaksInBucket(bucket, size_class_index, used_bits_count) or leaks;
optional_bucket = bucket.prev;
}
}
var it = self.large_allocations.valueIterator();
while (it.next()) |large_alloc| {
if (config.retain_metadata and large_alloc.freed) continue;
const stack_trace = large_alloc.getStackTrace(.alloc);
log.err("memory address 0x{x} leaked: {}", .{
@intFromPtr(large_alloc.bytes.ptr), stack_trace,
});
leaks = true;
}
return leaks;
}
fn freeRetainedMetadata(self: *Self) void {
comptime assert(config.retain_metadata);
if (config.never_unmap) {
// free large allocations that were intentionally leaked by never_unmap
var it = self.large_allocations.iterator();
while (it.next()) |large| {
if (large.value_ptr.freed) {
self.backing_allocator.rawFree(large.value_ptr.bytes, large.value_ptr.alignment, @returnAddress());
}
}
}
}
pub fn flushRetainedMetadata(self: *Self) void {
comptime assert(config.retain_metadata);
self.freeRetainedMetadata();
// also remove entries from large_allocations
var it = self.large_allocations.iterator();
while (it.next()) |large| {
if (large.value_ptr.freed) {
_ = self.large_allocations.remove(@intFromPtr(large.value_ptr.bytes.ptr));
}
}
}
/// Returns `std.heap.Check.leak` if there were leaks; `std.heap.Check.ok` otherwise.
pub fn deinit(self: *Self) std.heap.Check {
const leaks = if (config.safety) self.detectLeaks() else false;
if (config.retain_metadata) self.freeRetainedMetadata();
self.large_allocations.deinit(self.backing_allocator);
self.* = undefined;
return if (leaks) .leak else .ok;
}
fn collectStackTrace(first_trace_addr: usize, addresses: *[stack_n]usize) void {
if (stack_n == 0) return;
@memset(addresses, 0);
var stack_trace: StackTrace = .{
.instruction_addresses = addresses,
.index = 0,
};
std.debug.captureStackTrace(first_trace_addr, &stack_trace);
}
fn reportDoubleFree(ret_addr: usize, alloc_stack_trace: StackTrace, free_stack_trace: StackTrace) void {
var addresses: [stack_n]usize = @splat(0);
var second_free_stack_trace: StackTrace = .{
.instruction_addresses = &addresses,
.index = 0,
};
std.debug.captureStackTrace(ret_addr, &second_free_stack_trace);
log.err("Double free detected. Allocation: {} First free: {} Second free: {}", .{
alloc_stack_trace, free_stack_trace, second_free_stack_trace,
});
}
/// This function assumes the object is in the large object storage regardless
/// of the parameters.
fn resizeLarge(
self: *Self,
old_mem: []u8,
alignment: mem.Alignment,
new_size: usize,
ret_addr: usize,
may_move: bool,
) ?[*]u8 {
if (config.retain_metadata and may_move) {
// Before looking up the entry (since this could invalidate
// it), we must reserve space for the new entry in case the
// allocation is relocated.
self.large_allocations.ensureUnusedCapacity(self.backing_allocator, 1) catch return null;
}
const entry = self.large_allocations.getEntry(@intFromPtr(old_mem.ptr)) orelse {
if (config.safety) {
@panic("Invalid free");
} else {
unreachable;
}
};
if (config.retain_metadata and entry.value_ptr.freed) {
if (config.safety) {
reportDoubleFree(ret_addr, entry.value_ptr.getStackTrace(.alloc), entry.value_ptr.getStackTrace(.free));
@panic("Unrecoverable double free");
} else {
unreachable;
}
}
if (config.safety and old_mem.len != entry.value_ptr.bytes.len) {
var addresses: [stack_n]usize = [1]usize{0} ** stack_n;
var free_stack_trace: StackTrace = .{
.instruction_addresses = &addresses,
.index = 0,
};
std.debug.captureStackTrace(ret_addr, &free_stack_trace);
log.err("Allocation size {d} bytes does not match free size {d}. Allocation: {} Free: {}", .{
entry.value_ptr.bytes.len,
old_mem.len,
entry.value_ptr.getStackTrace(.alloc),
free_stack_trace,
});
}
// If this would move the allocation into a small size class,
// refuse the request, because it would require creating small
// allocation metadata.
const new_size_class_index: usize = @max(@bitSizeOf(usize) - @clz(new_size - 1), @intFromEnum(alignment));
if (new_size_class_index < self.buckets.len) return null;
// Do memory limit accounting with requested sizes rather than what
// backing_allocator returns because if we want to return
// error.OutOfMemory, we have to leave allocation untouched, and
// that is impossible to guarantee after calling
// backing_allocator.rawResize.
const prev_req_bytes = self.total_requested_bytes;
if (config.enable_memory_limit) {
const new_req_bytes = prev_req_bytes + new_size - entry.value_ptr.requested_size;
if (new_req_bytes > prev_req_bytes and new_req_bytes > self.requested_memory_limit) {
return null;
}
self.total_requested_bytes = new_req_bytes;
}
const opt_resized_ptr = if (may_move)
self.backing_allocator.rawRemap(old_mem, alignment, new_size, ret_addr)
else if (self.backing_allocator.rawResize(old_mem, alignment, new_size, ret_addr))
old_mem.ptr
else
null;
const resized_ptr = opt_resized_ptr orelse {
if (config.enable_memory_limit) {
self.total_requested_bytes = prev_req_bytes;
}
return null;
};
if (config.enable_memory_limit) {
entry.value_ptr.requested_size = new_size;
}
if (config.verbose_log) {
log.info("large resize {d} bytes at {*} to {d} at {*}", .{
old_mem.len, old_mem.ptr, new_size, resized_ptr,
});
}
entry.value_ptr.bytes = resized_ptr[0..new_size];
if (config.resize_stack_traces)
entry.value_ptr.captureStackTrace(ret_addr, .alloc);
// Update the key of the hash map if the memory was relocated.
if (resized_ptr != old_mem.ptr) {
const large_alloc = entry.value_ptr.*;
if (config.retain_metadata) {
entry.value_ptr.freed = true;
entry.value_ptr.captureStackTrace(ret_addr, .free);
} else {
self.large_allocations.removeByPtr(entry.key_ptr);
}
const gop = self.large_allocations.getOrPutAssumeCapacity(@intFromPtr(resized_ptr));
if (config.retain_metadata and !config.never_unmap) {
// Backing allocator may be reusing memory that we're retaining metadata for
assert(!gop.found_existing or gop.value_ptr.freed);
} else {
assert(!gop.found_existing); // This would mean the kernel double-mapped pages.
}
gop.value_ptr.* = large_alloc;
}
return resized_ptr;
}
/// This function assumes the object is in the large object storage regardless
/// of the parameters.
fn freeLarge(
self: *Self,
old_mem: []u8,
alignment: mem.Alignment,
ret_addr: usize,
) void {
const entry = self.large_allocations.getEntry(@intFromPtr(old_mem.ptr)) orelse {
if (config.safety) {
@panic("Invalid free");
} else {
unreachable;
}
};
if (config.retain_metadata and entry.value_ptr.freed) {
if (config.safety) {
reportDoubleFree(ret_addr, entry.value_ptr.getStackTrace(.alloc), entry.value_ptr.getStackTrace(.free));
return;
} else {
unreachable;
}
}
if (config.safety and old_mem.len != entry.value_ptr.bytes.len) {
var addresses: [stack_n]usize = [1]usize{0} ** stack_n;
var free_stack_trace = StackTrace{
.instruction_addresses = &addresses,
.index = 0,
};
std.debug.captureStackTrace(ret_addr, &free_stack_trace);
log.err("Allocation size {d} bytes does not match free size {d}. Allocation: {} Free: {}", .{
entry.value_ptr.bytes.len,
old_mem.len,
entry.value_ptr.getStackTrace(.alloc),
free_stack_trace,
});
}
if (!config.never_unmap) {
self.backing_allocator.rawFree(old_mem, alignment, ret_addr);
}
if (config.enable_memory_limit) {
self.total_requested_bytes -= entry.value_ptr.requested_size;
}
if (config.verbose_log) {
log.info("large free {d} bytes at {*}", .{ old_mem.len, old_mem.ptr });
}
if (!config.retain_metadata) {
assert(self.large_allocations.remove(@intFromPtr(old_mem.ptr)));
} else {
entry.value_ptr.freed = true;
entry.value_ptr.captureStackTrace(ret_addr, .free);
}
}
fn alloc(context: *anyopaque, len: usize, alignment: mem.Alignment, ret_addr: usize) ?[*]u8 {
const self: *Self = @ptrCast(@alignCast(context));
self.mutex.lock();
defer self.mutex.unlock();
if (config.enable_memory_limit) {
const new_req_bytes = self.total_requested_bytes + len;
if (new_req_bytes > self.requested_memory_limit) return null;
self.total_requested_bytes = new_req_bytes;
}
const size_class_index: usize = @max(@bitSizeOf(usize) - @clz(len - 1), @intFromEnum(alignment));
if (size_class_index >= self.buckets.len) {
@branchHint(.unlikely);
self.large_allocations.ensureUnusedCapacity(self.backing_allocator, 1) catch return null;
const ptr = self.backing_allocator.rawAlloc(len, alignment, ret_addr) orelse return null;
const slice = ptr[0..len];
const gop = self.large_allocations.getOrPutAssumeCapacity(@intFromPtr(slice.ptr));
if (config.retain_metadata and !config.never_unmap) {
// Backing allocator may be reusing memory that we're retaining metadata for
assert(!gop.found_existing or gop.value_ptr.freed);
} else {
assert(!gop.found_existing); // This would mean the kernel double-mapped pages.
}
gop.value_ptr.bytes = slice;
if (config.enable_memory_limit)
gop.value_ptr.requested_size = len;
gop.value_ptr.captureStackTrace(ret_addr, .alloc);
if (config.retain_metadata) {
gop.value_ptr.freed = false;
if (config.never_unmap) {
gop.value_ptr.alignment = alignment;
}
}
if (config.verbose_log) {
log.info("large alloc {d} bytes at {*}", .{ slice.len, slice.ptr });
}
return slice.ptr;
}
const slot_count = slot_counts[size_class_index];
if (self.buckets[size_class_index]) |bucket| {
@branchHint(.likely);
const slot_index = bucket.allocated_count;
if (slot_index < slot_count) {
@branchHint(.likely);
bucket.allocated_count = slot_index + 1;
const used_bits_byte = bucket.usedBits(slot_index / @bitSizeOf(usize));
const used_bit_index: Log2USize = @intCast(slot_index % @bitSizeOf(usize));
used_bits_byte.* |= (@as(usize, 1) << used_bit_index);
const size_class = @as(usize, 1) << @as(Log2USize, @intCast(size_class_index));
if (config.stack_trace_frames > 0) {
bucket.captureStackTrace(ret_addr, slot_count, slot_index, .alloc);
}
if (config.safety) {
bucket.requestedSizes(slot_count)[slot_index] = @intCast(len);
bucket.log2PtrAligns(slot_count)[slot_index] = alignment;
}
const page_addr = @intFromPtr(bucket) & ~(page_size - 1);
const addr = page_addr + slot_index * size_class;
if (config.verbose_log) {
log.info("small alloc {d} bytes at 0x{x}", .{ len, addr });
}
return @ptrFromInt(addr);
}
}
const page = self.backing_allocator.rawAlloc(page_size, page_align, @returnAddress()) orelse
return null;
const bucket: *BucketHeader = .fromPage(@intFromPtr(page), slot_count);
bucket.* = .{
.allocated_count = 1,
.freed_count = 0,
.prev = self.buckets[size_class_index],
};
self.buckets[size_class_index] = bucket;
if (!config.backing_allocator_zeroes) {
@memset(@as([*]usize, @as(*[1]usize, bucket.usedBits(0)))[0..usedBitsCount(slot_count)], 0);
if (config.safety) @memset(bucket.requestedSizes(slot_count), 0);
}
bucket.usedBits(0).* = 0b1;
if (config.stack_trace_frames > 0) {
bucket.captureStackTrace(ret_addr, slot_count, 0, .alloc);
}
if (config.safety) {
bucket.requestedSizes(slot_count)[0] = @intCast(len);
bucket.log2PtrAligns(slot_count)[0] = alignment;
}
if (config.verbose_log) {
log.info("small alloc {d} bytes at 0x{x}", .{ len, @intFromPtr(page) });
}
return page;
}
fn resize(
context: *anyopaque,
memory: []u8,
alignment: mem.Alignment,
new_len: usize,
return_address: usize,
) bool {
const self: *Self = @ptrCast(@alignCast(context));
self.mutex.lock();
defer self.mutex.unlock();
const size_class_index: usize = @max(@bitSizeOf(usize) - @clz(memory.len - 1), @intFromEnum(alignment));
if (size_class_index >= self.buckets.len) {
return self.resizeLarge(memory, alignment, new_len, return_address, false) != null;
} else {
return resizeSmall(self, memory, alignment, new_len, return_address, size_class_index);
}
}
fn remap(
context: *anyopaque,
memory: []u8,
alignment: mem.Alignment,
new_len: usize,
return_address: usize,
) ?[*]u8 {
const self: *Self = @ptrCast(@alignCast(context));
self.mutex.lock();
defer self.mutex.unlock();
const size_class_index: usize = @max(@bitSizeOf(usize) - @clz(memory.len - 1), @intFromEnum(alignment));
if (size_class_index >= self.buckets.len) {
return self.resizeLarge(memory, alignment, new_len, return_address, true);
} else {
return if (resizeSmall(self, memory, alignment, new_len, return_address, size_class_index)) memory.ptr else null;
}
}
fn free(
context: *anyopaque,
old_memory: []u8,
alignment: mem.Alignment,
return_address: usize,
) void {
const self: *Self = @ptrCast(@alignCast(context));
self.mutex.lock();
defer self.mutex.unlock();
const size_class_index: usize = @max(@bitSizeOf(usize) - @clz(old_memory.len - 1), @intFromEnum(alignment));
if (size_class_index >= self.buckets.len) {
@branchHint(.unlikely);
self.freeLarge(old_memory, alignment, return_address);
return;
}
const slot_count = slot_counts[size_class_index];
const freed_addr = @intFromPtr(old_memory.ptr);
const page_addr = freed_addr & ~(page_size - 1);
const bucket: *BucketHeader = .fromPage(page_addr, slot_count);
if (bucket.canary != config.canary) @panic("Invalid free");
const page_offset = freed_addr - page_addr;
const size_class = @as(usize, 1) << @as(Log2USize, @intCast(size_class_index));
const slot_index: SlotIndex = @intCast(page_offset / size_class);
const used_byte_index = slot_index / @bitSizeOf(usize);
const used_bit_index: Log2USize = @intCast(slot_index % @bitSizeOf(usize));
const used_byte = bucket.usedBits(used_byte_index);
const is_used = @as(u1, @truncate(used_byte.* >> used_bit_index)) != 0;
if (!is_used) {
if (config.safety) {
reportDoubleFree(
return_address,
bucketStackTrace(bucket, slot_count, slot_index, .alloc),
bucketStackTrace(bucket, slot_count, slot_index, .free),
);
// Recoverable since this is a free.
return;
} else {
unreachable;
}
}
// Definitely an in-use small alloc now.
if (config.safety) {
const requested_size = bucket.requestedSizes(slot_count)[slot_index];
if (requested_size == 0) @panic("Invalid free");
const slot_alignment = bucket.log2PtrAligns(slot_count)[slot_index];
if (old_memory.len != requested_size or alignment != slot_alignment) {
var addresses: [stack_n]usize = [1]usize{0} ** stack_n;
var free_stack_trace: StackTrace = .{
.instruction_addresses = &addresses,
.index = 0,
};
std.debug.captureStackTrace(return_address, &free_stack_trace);
if (old_memory.len != requested_size) {
log.err("Allocation size {d} bytes does not match free size {d}. Allocation: {} Free: {}", .{
requested_size,
old_memory.len,
bucketStackTrace(bucket, slot_count, slot_index, .alloc),
free_stack_trace,
});
}
if (alignment != slot_alignment) {
log.err("Allocation alignment {d} does not match free alignment {d}. Allocation: {} Free: {}", .{
slot_alignment.toByteUnits(),
alignment.toByteUnits(),
bucketStackTrace(bucket, slot_count, slot_index, .alloc),
free_stack_trace,
});
}
}
}
if (config.enable_memory_limit) {
self.total_requested_bytes -= old_memory.len;
}
if (config.stack_trace_frames > 0) {
// Capture stack trace to be the "first free", in case a double free happens.
bucket.captureStackTrace(return_address, slot_count, slot_index, .free);
}
used_byte.* &= ~(@as(usize, 1) << used_bit_index);
if (config.safety) {
bucket.requestedSizes(slot_count)[slot_index] = 0;
}
bucket.freed_count += 1;
if (bucket.freed_count == bucket.allocated_count) {
if (self.buckets[size_class_index] == bucket) {
self.buckets[size_class_index] = null;
}
if (!config.never_unmap) {
const page: [*]align(page_size) u8 = @ptrFromInt(page_addr);
self.backing_allocator.rawFree(page[0..page_size], page_align, @returnAddress());
}
}
if (config.verbose_log) {
log.info("small free {d} bytes at {*}", .{ old_memory.len, old_memory.ptr });
}
}
fn resizeSmall(
self: *Self,
memory: []u8,
alignment: mem.Alignment,
new_len: usize,
return_address: usize,
size_class_index: usize,
) bool {
const new_size_class_index: usize = @max(@bitSizeOf(usize) - @clz(new_len - 1), @intFromEnum(alignment));
if (!config.safety) return new_size_class_index == size_class_index;
const slot_count = slot_counts[size_class_index];
const memory_addr = @intFromPtr(memory.ptr);
const page_addr = memory_addr & ~(page_size - 1);
const bucket: *BucketHeader = .fromPage(page_addr, slot_count);
if (bucket.canary != config.canary) @panic("Invalid free");
const page_offset = memory_addr - page_addr;
const size_class = @as(usize, 1) << @as(Log2USize, @intCast(size_class_index));
const slot_index: SlotIndex = @intCast(page_offset / size_class);
const used_byte_index = slot_index / @bitSizeOf(usize);
const used_bit_index: Log2USize = @intCast(slot_index % @bitSizeOf(usize));
const used_byte = bucket.usedBits(used_byte_index);
const is_used = @as(u1, @truncate(used_byte.* >> used_bit_index)) != 0;
if (!is_used) {
reportDoubleFree(
return_address,
bucketStackTrace(bucket, slot_count, slot_index, .alloc),
bucketStackTrace(bucket, slot_count, slot_index, .free),
);
// Recoverable since this is a free.
return false;
}
// Definitely an in-use small alloc now.
const requested_size = bucket.requestedSizes(slot_count)[slot_index];
if (requested_size == 0) @panic("Invalid free");
const slot_alignment = bucket.log2PtrAligns(slot_count)[slot_index];
if (memory.len != requested_size or alignment != slot_alignment) {
var addresses: [stack_n]usize = [1]usize{0} ** stack_n;
var free_stack_trace: StackTrace = .{
.instruction_addresses = &addresses,
.index = 0,
};
std.debug.captureStackTrace(return_address, &free_stack_trace);
if (memory.len != requested_size) {
log.err("Allocation size {d} bytes does not match free size {d}. Allocation: {} Free: {}", .{
requested_size,
memory.len,
bucketStackTrace(bucket, slot_count, slot_index, .alloc),
free_stack_trace,
});
}
if (alignment != slot_alignment) {
log.err("Allocation alignment {d} does not match free alignment {d}. Allocation: {} Free: {}", .{
slot_alignment.toByteUnits(),
alignment.toByteUnits(),
bucketStackTrace(bucket, slot_count, slot_index, .alloc),
free_stack_trace,
});
}
}
if (new_size_class_index != size_class_index) return false;
const prev_req_bytes = self.total_requested_bytes;
if (config.enable_memory_limit) {
const new_req_bytes = prev_req_bytes - memory.len + new_len;
if (new_req_bytes > prev_req_bytes and new_req_bytes > self.requested_memory_limit) {
return false;
}
self.total_requested_bytes = new_req_bytes;
}
if (memory.len > new_len) @memset(memory[new_len..], undefined);
if (config.verbose_log)
log.info("small resize {d} bytes at {*} to {d}", .{ memory.len, memory.ptr, new_len });
if (config.safety)
bucket.requestedSizes(slot_count)[slot_index] = @intCast(new_len);
if (config.resize_stack_traces)
bucket.captureStackTrace(return_address, slot_count, slot_index, .alloc);
return true;
}
};
}