struct PageAllocator [src]
Alias for std.heap.PageAllocator
Members
Source
const std = @import("../std.zig");
const builtin = @import("builtin");
const Allocator = std.mem.Allocator;
const mem = std.mem;
const maxInt = std.math.maxInt;
const assert = std.debug.assert;
const native_os = builtin.os.tag;
const windows = std.os.windows;
const ntdll = windows.ntdll;
const posix = std.posix;
const page_size_min = std.heap.page_size_min;
const SUCCESS = @import("../os/windows/ntstatus.zig").NTSTATUS.SUCCESS;
const MEM_RESERVE_PLACEHOLDER = windows.MEM_RESERVE_PLACEHOLDER;
const MEM_PRESERVE_PLACEHOLDER = windows.MEM_PRESERVE_PLACEHOLDER;
pub const vtable: Allocator.VTable = .{
.alloc = alloc,
.resize = resize,
.remap = remap,
.free = free,
};
pub fn map(n: usize, alignment: mem.Alignment) ?[*]u8 {
const page_size = std.heap.pageSize();
if (n >= maxInt(usize) - page_size) return null;
const alignment_bytes = alignment.toByteUnits();
if (native_os == .windows) {
var base_addr: ?*anyopaque = null;
var size: windows.SIZE_T = n;
var status = ntdll.NtAllocateVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&base_addr), 0, &size, windows.MEM_COMMIT | windows.MEM_RESERVE, windows.PAGE_READWRITE);
if (status == SUCCESS and mem.isAligned(@intFromPtr(base_addr), alignment_bytes)) {
return @ptrCast(base_addr);
}
if (status == SUCCESS) {
var region_size: windows.SIZE_T = 0;
_ = ntdll.NtFreeVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&base_addr), ®ion_size, windows.MEM_RELEASE);
}
const overalloc_len = n + alignment_bytes - page_size;
const aligned_len = mem.alignForward(usize, n, page_size);
base_addr = null;
size = overalloc_len;
status = ntdll.NtAllocateVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&base_addr), 0, &size, windows.MEM_RESERVE | MEM_RESERVE_PLACEHOLDER, windows.PAGE_NOACCESS);
if (status != SUCCESS) return null;
const placeholder_addr = @intFromPtr(base_addr);
const aligned_addr = mem.alignForward(usize, placeholder_addr, alignment_bytes);
const prefix_size = aligned_addr - placeholder_addr;
if (prefix_size > 0) {
var prefix_base = base_addr;
var prefix_size_param: windows.SIZE_T = prefix_size;
_ = ntdll.NtFreeVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&prefix_base), &prefix_size_param, windows.MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER);
}
const suffix_start = aligned_addr + aligned_len;
const suffix_size = (placeholder_addr + overalloc_len) - suffix_start;
if (suffix_size > 0) {
var suffix_base = @as(?*anyopaque, @ptrFromInt(suffix_start));
var suffix_size_param: windows.SIZE_T = suffix_size;
_ = ntdll.NtFreeVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&suffix_base), &suffix_size_param, windows.MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER);
}
base_addr = @ptrFromInt(aligned_addr);
size = aligned_len;
status = ntdll.NtAllocateVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&base_addr), 0, &size, windows.MEM_COMMIT | MEM_PRESERVE_PLACEHOLDER, windows.PAGE_READWRITE);
if (status == SUCCESS) {
return @ptrCast(base_addr);
}
base_addr = @as(?*anyopaque, @ptrFromInt(aligned_addr));
size = aligned_len;
_ = ntdll.NtFreeVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&base_addr), &size, windows.MEM_RELEASE);
return null;
}
const aligned_len = mem.alignForward(usize, n, page_size);
const max_drop_len = alignment_bytes - @min(alignment_bytes, page_size);
const overalloc_len = if (max_drop_len <= aligned_len - n)
aligned_len
else
mem.alignForward(usize, aligned_len + max_drop_len, page_size);
const hint = @atomicLoad(@TypeOf(std.heap.next_mmap_addr_hint), &std.heap.next_mmap_addr_hint, .unordered);
const slice = posix.mmap(
hint,
overalloc_len,
posix.PROT.READ | posix.PROT.WRITE,
.{ .TYPE = .PRIVATE, .ANONYMOUS = true },
-1,
0,
) catch return null;
const result_ptr = mem.alignPointer(slice.ptr, alignment_bytes) orelse return null;
// Unmap the extra bytes that were only requested in order to guarantee
// that the range of memory we were provided had a proper alignment in it
// somewhere. The extra bytes could be at the beginning, or end, or both.
const drop_len = result_ptr - slice.ptr;
if (drop_len != 0) posix.munmap(slice[0..drop_len]);
const remaining_len = overalloc_len - drop_len;
if (remaining_len > aligned_len) posix.munmap(@alignCast(result_ptr[aligned_len..remaining_len]));
const new_hint: [*]align(page_size_min) u8 = @alignCast(result_ptr + aligned_len);
_ = @cmpxchgStrong(@TypeOf(std.heap.next_mmap_addr_hint), &std.heap.next_mmap_addr_hint, hint, new_hint, .monotonic, .monotonic);
return result_ptr;
}
fn alloc(context: *anyopaque, n: usize, alignment: mem.Alignment, ra: usize) ?[*]u8 {
_ = context;
_ = ra;
assert(n > 0);
return map(n, alignment);
}
fn resize(context: *anyopaque, memory: []u8, alignment: mem.Alignment, new_len: usize, return_address: usize) bool {
_ = context;
_ = alignment;
_ = return_address;
return realloc(memory, new_len, false) != null;
}
fn remap(context: *anyopaque, memory: []u8, alignment: mem.Alignment, new_len: usize, return_address: usize) ?[*]u8 {
_ = context;
_ = alignment;
_ = return_address;
return realloc(memory, new_len, true);
}
fn free(context: *anyopaque, memory: []u8, alignment: mem.Alignment, return_address: usize) void {
_ = context;
_ = alignment;
_ = return_address;
return unmap(@alignCast(memory));
}
pub fn unmap(memory: []align(page_size_min) u8) void {
if (native_os == .windows) {
var base_addr: ?*anyopaque = memory.ptr;
var region_size: windows.SIZE_T = 0;
_ = ntdll.NtFreeVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&base_addr), ®ion_size, windows.MEM_RELEASE);
} else {
const page_aligned_len = mem.alignForward(usize, memory.len, std.heap.pageSize());
posix.munmap(memory.ptr[0..page_aligned_len]);
}
}
pub fn realloc(uncasted_memory: []u8, new_len: usize, may_move: bool) ?[*]u8 {
const memory: []align(page_size_min) u8 = @alignCast(uncasted_memory);
const page_size = std.heap.pageSize();
const new_size_aligned = mem.alignForward(usize, new_len, page_size);
if (native_os == .windows) {
if (new_len <= memory.len) {
const base_addr = @intFromPtr(memory.ptr);
const old_addr_end = base_addr + memory.len;
const new_addr_end = mem.alignForward(usize, base_addr + new_len, page_size);
if (old_addr_end > new_addr_end) {
var decommit_addr: ?*anyopaque = @ptrFromInt(new_addr_end);
var decommit_size: windows.SIZE_T = old_addr_end - new_addr_end;
_ = ntdll.NtAllocateVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&decommit_addr), 0, &decommit_size, windows.MEM_RESET, windows.PAGE_NOACCESS);
}
return memory.ptr;
}
const old_size_aligned = mem.alignForward(usize, memory.len, page_size);
if (new_size_aligned <= old_size_aligned) {
return memory.ptr;
}
return null;
}
const page_aligned_len = mem.alignForward(usize, memory.len, page_size);
if (new_size_aligned == page_aligned_len)
return memory.ptr;
if (posix.MREMAP != void) {
// TODO: if the next_mmap_addr_hint is within the remapped range, update it
const new_memory = posix.mremap(memory.ptr, memory.len, new_len, .{ .MAYMOVE = may_move }, null) catch return null;
return new_memory.ptr;
}
if (new_size_aligned < page_aligned_len) {
const ptr = memory.ptr + new_size_aligned;
// TODO: if the next_mmap_addr_hint is within the unmapped range, update it
posix.munmap(@alignCast(ptr[0 .. page_aligned_len - new_size_aligned]));
return memory.ptr;
}
return null;
}