struct PageAllocator [src]

Alias for std.heap.PageAllocator

Members

Source

const std = @import("../std.zig"); const builtin = @import("builtin"); const Allocator = std.mem.Allocator; const mem = std.mem; const maxInt = std.math.maxInt; const assert = std.debug.assert; const native_os = builtin.os.tag; const windows = std.os.windows; const ntdll = windows.ntdll; const posix = std.posix; const page_size_min = std.heap.page_size_min; const SUCCESS = @import("../os/windows/ntstatus.zig").NTSTATUS.SUCCESS; const MEM_RESERVE_PLACEHOLDER = windows.MEM_RESERVE_PLACEHOLDER; const MEM_PRESERVE_PLACEHOLDER = windows.MEM_PRESERVE_PLACEHOLDER; pub const vtable: Allocator.VTable = .{ .alloc = alloc, .resize = resize, .remap = remap, .free = free, }; pub fn map(n: usize, alignment: mem.Alignment) ?[*]u8 { const page_size = std.heap.pageSize(); if (n >= maxInt(usize) - page_size) return null; const alignment_bytes = alignment.toByteUnits(); if (native_os == .windows) { var base_addr: ?*anyopaque = null; var size: windows.SIZE_T = n; var status = ntdll.NtAllocateVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&base_addr), 0, &size, windows.MEM_COMMIT | windows.MEM_RESERVE, windows.PAGE_READWRITE); if (status == SUCCESS and mem.isAligned(@intFromPtr(base_addr), alignment_bytes)) { return @ptrCast(base_addr); } if (status == SUCCESS) { var region_size: windows.SIZE_T = 0; _ = ntdll.NtFreeVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&base_addr), ®ion_size, windows.MEM_RELEASE); } const overalloc_len = n + alignment_bytes - page_size; const aligned_len = mem.alignForward(usize, n, page_size); base_addr = null; size = overalloc_len; status = ntdll.NtAllocateVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&base_addr), 0, &size, windows.MEM_RESERVE | MEM_RESERVE_PLACEHOLDER, windows.PAGE_NOACCESS); if (status != SUCCESS) return null; const placeholder_addr = @intFromPtr(base_addr); const aligned_addr = mem.alignForward(usize, placeholder_addr, alignment_bytes); const prefix_size = aligned_addr - placeholder_addr; if (prefix_size > 0) { var prefix_base = base_addr; var prefix_size_param: windows.SIZE_T = prefix_size; _ = ntdll.NtFreeVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&prefix_base), &prefix_size_param, windows.MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER); } const suffix_start = aligned_addr + aligned_len; const suffix_size = (placeholder_addr + overalloc_len) - suffix_start; if (suffix_size > 0) { var suffix_base = @as(?*anyopaque, @ptrFromInt(suffix_start)); var suffix_size_param: windows.SIZE_T = suffix_size; _ = ntdll.NtFreeVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&suffix_base), &suffix_size_param, windows.MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER); } base_addr = @ptrFromInt(aligned_addr); size = aligned_len; status = ntdll.NtAllocateVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&base_addr), 0, &size, windows.MEM_COMMIT | MEM_PRESERVE_PLACEHOLDER, windows.PAGE_READWRITE); if (status == SUCCESS) { return @ptrCast(base_addr); } base_addr = @as(?*anyopaque, @ptrFromInt(aligned_addr)); size = aligned_len; _ = ntdll.NtFreeVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&base_addr), &size, windows.MEM_RELEASE); return null; } const aligned_len = mem.alignForward(usize, n, page_size); const max_drop_len = alignment_bytes - @min(alignment_bytes, page_size); const overalloc_len = if (max_drop_len <= aligned_len - n) aligned_len else mem.alignForward(usize, aligned_len + max_drop_len, page_size); const hint = @atomicLoad(@TypeOf(std.heap.next_mmap_addr_hint), &std.heap.next_mmap_addr_hint, .unordered); const slice = posix.mmap( hint, overalloc_len, posix.PROT.READ | posix.PROT.WRITE, .{ .TYPE = .PRIVATE, .ANONYMOUS = true }, -1, 0, ) catch return null; const result_ptr = mem.alignPointer(slice.ptr, alignment_bytes) orelse return null; // Unmap the extra bytes that were only requested in order to guarantee // that the range of memory we were provided had a proper alignment in it // somewhere. The extra bytes could be at the beginning, or end, or both. const drop_len = result_ptr - slice.ptr; if (drop_len != 0) posix.munmap(slice[0..drop_len]); const remaining_len = overalloc_len - drop_len; if (remaining_len > aligned_len) posix.munmap(@alignCast(result_ptr[aligned_len..remaining_len])); const new_hint: [*]align(page_size_min) u8 = @alignCast(result_ptr + aligned_len); _ = @cmpxchgStrong(@TypeOf(std.heap.next_mmap_addr_hint), &std.heap.next_mmap_addr_hint, hint, new_hint, .monotonic, .monotonic); return result_ptr; } fn alloc(context: *anyopaque, n: usize, alignment: mem.Alignment, ra: usize) ?[*]u8 { _ = context; _ = ra; assert(n > 0); return map(n, alignment); } fn resize(context: *anyopaque, memory: []u8, alignment: mem.Alignment, new_len: usize, return_address: usize) bool { _ = context; _ = alignment; _ = return_address; return realloc(memory, new_len, false) != null; } fn remap(context: *anyopaque, memory: []u8, alignment: mem.Alignment, new_len: usize, return_address: usize) ?[*]u8 { _ = context; _ = alignment; _ = return_address; return realloc(memory, new_len, true); } fn free(context: *anyopaque, memory: []u8, alignment: mem.Alignment, return_address: usize) void { _ = context; _ = alignment; _ = return_address; return unmap(@alignCast(memory)); } pub fn unmap(memory: []align(page_size_min) u8) void { if (native_os == .windows) { var base_addr: ?*anyopaque = memory.ptr; var region_size: windows.SIZE_T = 0; _ = ntdll.NtFreeVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&base_addr), ®ion_size, windows.MEM_RELEASE); } else { const page_aligned_len = mem.alignForward(usize, memory.len, std.heap.pageSize()); posix.munmap(memory.ptr[0..page_aligned_len]); } } pub fn realloc(uncasted_memory: []u8, new_len: usize, may_move: bool) ?[*]u8 { const memory: []align(page_size_min) u8 = @alignCast(uncasted_memory); const page_size = std.heap.pageSize(); const new_size_aligned = mem.alignForward(usize, new_len, page_size); if (native_os == .windows) { if (new_len <= memory.len) { const base_addr = @intFromPtr(memory.ptr); const old_addr_end = base_addr + memory.len; const new_addr_end = mem.alignForward(usize, base_addr + new_len, page_size); if (old_addr_end > new_addr_end) { var decommit_addr: ?*anyopaque = @ptrFromInt(new_addr_end); var decommit_size: windows.SIZE_T = old_addr_end - new_addr_end; _ = ntdll.NtAllocateVirtualMemory(windows.GetCurrentProcess(), @ptrCast(&decommit_addr), 0, &decommit_size, windows.MEM_RESET, windows.PAGE_NOACCESS); } return memory.ptr; } const old_size_aligned = mem.alignForward(usize, memory.len, page_size); if (new_size_aligned <= old_size_aligned) { return memory.ptr; } return null; } const page_aligned_len = mem.alignForward(usize, memory.len, page_size); if (new_size_aligned == page_aligned_len) return memory.ptr; if (posix.MREMAP != void) { // TODO: if the next_mmap_addr_hint is within the remapped range, update it const new_memory = posix.mremap(memory.ptr, memory.len, new_len, .{ .MAYMOVE = may_move }, null) catch return null; return new_memory.ptr; } if (new_size_aligned < page_aligned_len) { const ptr = memory.ptr + new_size_aligned; // TODO: if the next_mmap_addr_hint is within the unmapped range, update it posix.munmap(@alignCast(ptr[0 .. page_aligned_len - new_size_aligned])); return memory.ptr; } return null; }