struct Rational [src]

Alias for std.math.big.rational.Rational

An arbitrary-precision rational number. Memory is allocated as needed for operations to ensure full precision is kept. The precision of a Rational is only bounded by memory. Rational's are always normalized. That is, for a Rational r = p/q where p and q are integers, gcd(p, q) = 1 always. TODO rework this to store its own allocator and use a non-managed big int, to avoid double allocator storage.

Fields

p: IntNumerator. Determines the sign of the Rational.
q: IntDenominator. Sign is ignored.

Members

Source

pub const Rational = struct { /// Numerator. Determines the sign of the Rational. p: Int, /// Denominator. Sign is ignored. q: Int, /// Create a new Rational. A small amount of memory will be allocated on initialization. /// This will be 2 * Int.default_capacity. pub fn init(a: Allocator) !Rational { var p = try Int.init(a); errdefer p.deinit(); return Rational{ .p = p, .q = try Int.initSet(a, 1), }; } /// Frees all memory associated with a Rational. pub fn deinit(self: *Rational) void { self.p.deinit(); self.q.deinit(); } /// Set a Rational from a primitive integer type. pub fn setInt(self: *Rational, a: anytype) !void { try self.p.set(a); try self.q.set(1); } /// Set a Rational from a string of the form `A/B` where A and B are base-10 integers. pub fn setFloatString(self: *Rational, str: []const u8) !void { // TODO: Accept a/b fractions and exponent form if (str.len == 0) { return error.InvalidFloatString; } const State = enum { Integer, Fractional, }; var state = State.Integer; var point: ?usize = null; var start: usize = 0; if (str[0] == '-') { start += 1; } for (str, 0..) |c, i| { switch (state) { State.Integer => { switch (c) { '.' => { state = State.Fractional; point = i; }, '0'...'9' => { // okay }, else => { return error.InvalidFloatString; }, } }, State.Fractional => { switch (c) { '0'...'9' => { // okay }, else => { return error.InvalidFloatString; }, } }, } } // TODO: batch the multiplies by 10 if (point) |i| { try self.p.setString(10, str[0..i]); const base = IntConst{ .limbs = &[_]Limb{10}, .positive = true }; var local_buf: [@sizeOf(Limb) * Int.default_capacity]u8 align(@alignOf(Limb)) = undefined; var fba = std.heap.FixedBufferAllocator.init(&local_buf); const base_managed = try base.toManaged(fba.allocator()); var j: usize = start; while (j < str.len - i - 1) : (j += 1) { try self.p.ensureMulCapacity(self.p.toConst(), base); try self.p.mul(&self.p, &base_managed); } try self.q.setString(10, str[i + 1 ..]); try self.p.add(&self.p, &self.q); try self.q.set(1); var k: usize = i + 1; while (k < str.len) : (k += 1) { try self.q.mul(&self.q, &base_managed); } try self.reduce(); } else { try self.p.setString(10, str[0..]); try self.q.set(1); } } /// Set a Rational from a floating-point value. The rational will have enough precision to /// completely represent the provided float. pub fn setFloat(self: *Rational, comptime T: type, f: T) !void { // Translated from golang.go/src/math/big/rat.go. debug.assert(@typeInfo(T) == .float); const UnsignedInt = std.meta.Int(.unsigned, @typeInfo(T).float.bits); const f_bits = @as(UnsignedInt, @bitCast(f)); const exponent_bits = math.floatExponentBits(T); const exponent_bias = (1 << (exponent_bits - 1)) - 1; const mantissa_bits = math.floatMantissaBits(T); const exponent_mask = (1 << exponent_bits) - 1; const mantissa_mask = (1 << mantissa_bits) - 1; var exponent = @as(i16, @intCast((f_bits >> mantissa_bits) & exponent_mask)); var mantissa = f_bits & mantissa_mask; switch (exponent) { exponent_mask => { return error.NonFiniteFloat; }, 0 => { // denormal exponent -= exponent_bias - 1; }, else => { // normal mantissa |= 1 << mantissa_bits; exponent -= exponent_bias; }, } var shift: i16 = mantissa_bits - exponent; // factor out powers of two early from rational while (mantissa & 1 == 0 and shift > 0) { mantissa >>= 1; shift -= 1; } try self.p.set(mantissa); self.p.setSign(f >= 0); try self.q.set(1); if (shift >= 0) { try self.q.shiftLeft(&self.q, @as(usize, @intCast(shift))); } else { try self.p.shiftLeft(&self.p, @as(usize, @intCast(-shift))); } try self.reduce(); } /// Return a floating-point value that is the closest value to a Rational. /// /// The result may not be exact if the Rational is too precise or too large for the /// target type. pub fn toFloat(self: Rational, comptime T: type) !T { // Translated from golang.go/src/math/big/rat.go. // TODO: Indicate whether the result is not exact. debug.assert(@typeInfo(T) == .float); const fsize = @typeInfo(T).float.bits; const BitReprType = std.meta.Int(.unsigned, fsize); const msize = math.floatMantissaBits(T); const msize1 = msize + 1; const msize2 = msize1 + 1; const esize = math.floatExponentBits(T); const ebias = (1 << (esize - 1)) - 1; const emin = 1 - ebias; if (self.p.eqlZero()) { return 0; } // 1. left-shift a or sub so that a/b is in [1 << msize1, 1 << (msize2 + 1)] var exp = @as(isize, @intCast(self.p.bitCountTwosComp())) - @as(isize, @intCast(self.q.bitCountTwosComp())); var a2 = try self.p.clone(); defer a2.deinit(); var b2 = try self.q.clone(); defer b2.deinit(); const shift = msize2 - exp; if (shift >= 0) { try a2.shiftLeft(&a2, @as(usize, @intCast(shift))); } else { try b2.shiftLeft(&b2, @as(usize, @intCast(-shift))); } // 2. compute quotient and remainder var q = try Int.init(self.p.allocator); defer q.deinit(); // unused var r = try Int.init(self.p.allocator); defer r.deinit(); try Int.divTrunc(&q, &r, &a2, &b2); var mantissa = extractLowBits(q, BitReprType); var have_rem = r.len() > 0; // 3. q didn't fit in msize2 bits, redo division b2 << 1 if (mantissa >> msize2 == 1) { if (mantissa & 1 == 1) { have_rem = true; } mantissa >>= 1; exp += 1; } if (mantissa >> msize1 != 1) { // NOTE: This can be hit if the limb size is small (u8/16). @panic("unexpected bits in result"); } // 4. Rounding if (emin - msize <= exp and exp <= emin) { // denormal const shift1 = @as(math.Log2Int(BitReprType), @intCast(emin - (exp - 1))); const lost_bits = mantissa & ((@as(BitReprType, @intCast(1)) << shift1) - 1); have_rem = have_rem or lost_bits != 0; mantissa >>= shift1; exp = 2 - ebias; } // round q using round-half-to-even var exact = !have_rem; if (mantissa & 1 != 0) { exact = false; if (have_rem or (mantissa & 2 != 0)) { mantissa += 1; if (mantissa >= 1 << msize2) { // 11...1 => 100...0 mantissa >>= 1; exp += 1; } } } mantissa >>= 1; const f = math.scalbn(@as(T, @floatFromInt(mantissa)), @as(i32, @intCast(exp - msize1))); if (math.isInf(f)) { exact = false; } return if (self.p.isPositive()) f else -f; } /// Set a rational from an integer ratio. pub fn setRatio(self: *Rational, p: anytype, q: anytype) !void { try self.p.set(p); try self.q.set(q); self.p.setSign(@intFromBool(self.p.isPositive()) ^ @intFromBool(self.q.isPositive()) == 0); self.q.setSign(true); try self.reduce(); if (self.q.eqlZero()) { @panic("cannot set rational with denominator = 0"); } } /// Set a Rational directly from an Int. pub fn copyInt(self: *Rational, a: Int) !void { try self.p.copy(a.toConst()); try self.q.set(1); } /// Set a Rational directly from a ratio of two Int's. pub fn copyRatio(self: *Rational, a: Int, b: Int) !void { try self.p.copy(a.toConst()); try self.q.copy(b.toConst()); self.p.setSign(@intFromBool(self.p.isPositive()) ^ @intFromBool(self.q.isPositive()) == 0); self.q.setSign(true); try self.reduce(); } /// Make a Rational positive. pub fn abs(r: *Rational) void { r.p.abs(); } /// Negate the sign of a Rational. pub fn negate(r: *Rational) void { r.p.negate(); } /// Efficiently swap a Rational with another. This swaps the limb pointers and a full copy is not /// performed. The address of the limbs field will not be the same after this function. pub fn swap(r: *Rational, other: *Rational) void { r.p.swap(&other.p); r.q.swap(&other.q); } /// Returns math.Order.lt, math.Order.eq, math.Order.gt if a < b, a == b or /// a > b respectively. pub fn order(a: Rational, b: Rational) !math.Order { return cmpInternal(a, b, false); } /// Returns math.Order.lt, math.Order.eq, math.Order.gt if |a| < |b|, |a| == /// |b| or |a| > |b| respectively. pub fn orderAbs(a: Rational, b: Rational) !math.Order { return cmpInternal(a, b, true); } // p/q > x/y iff p*y > x*q fn cmpInternal(a: Rational, b: Rational, is_abs: bool) !math.Order { // TODO: Would a div compare algorithm of sorts be viable and quicker? Can we avoid // the memory allocations here? var q = try Int.init(a.p.allocator); defer q.deinit(); var p = try Int.init(b.p.allocator); defer p.deinit(); try q.mul(&a.p, &b.q); try p.mul(&b.p, &a.q); return if (is_abs) q.orderAbs(p) else q.order(p); } /// rma = a + b. /// /// rma, a and b may be aliases. However, it is more efficient if rma does not alias a or b. /// /// Returns an error if memory could not be allocated. pub fn add(rma: *Rational, a: Rational, b: Rational) !void { var r = rma; var aliased = rma.p.limbs.ptr == a.p.limbs.ptr or rma.p.limbs.ptr == b.p.limbs.ptr; var sr: Rational = undefined; if (aliased) { sr = try Rational.init(rma.p.allocator); r = &sr; aliased = true; } defer if (aliased) { rma.swap(r); r.deinit(); }; try r.p.mul(&a.p, &b.q); try r.q.mul(&b.p, &a.q); try r.p.add(&r.p, &r.q); try r.q.mul(&a.q, &b.q); try r.reduce(); } /// rma = a - b. /// /// rma, a and b may be aliases. However, it is more efficient if rma does not alias a or b. /// /// Returns an error if memory could not be allocated. pub fn sub(rma: *Rational, a: Rational, b: Rational) !void { var r = rma; var aliased = rma.p.limbs.ptr == a.p.limbs.ptr or rma.p.limbs.ptr == b.p.limbs.ptr; var sr: Rational = undefined; if (aliased) { sr = try Rational.init(rma.p.allocator); r = &sr; aliased = true; } defer if (aliased) { rma.swap(r); r.deinit(); }; try r.p.mul(&a.p, &b.q); try r.q.mul(&b.p, &a.q); try r.p.sub(&r.p, &r.q); try r.q.mul(&a.q, &b.q); try r.reduce(); } /// rma = a * b. /// /// rma, a and b may be aliases. However, it is more efficient if rma does not alias a or b. /// /// Returns an error if memory could not be allocated. pub fn mul(r: *Rational, a: Rational, b: Rational) !void { try r.p.mul(&a.p, &b.p); try r.q.mul(&a.q, &b.q); try r.reduce(); } /// rma = a / b. /// /// rma, a and b may be aliases. However, it is more efficient if rma does not alias a or b. /// /// Returns an error if memory could not be allocated. pub fn div(r: *Rational, a: Rational, b: Rational) !void { if (b.p.eqlZero()) { @panic("division by zero"); } try r.p.mul(&a.p, &b.q); try r.q.mul(&b.p, &a.q); try r.reduce(); } /// Invert the numerator and denominator fields of a Rational. p/q => q/p. pub fn invert(r: *Rational) void { Int.swap(&r.p, &r.q); } // reduce r/q such that gcd(r, q) = 1 fn reduce(r: *Rational) !void { var a = try Int.init(r.p.allocator); defer a.deinit(); const sign = r.p.isPositive(); r.p.abs(); try a.gcd(&r.p, &r.q); r.p.setSign(sign); const one = IntConst{ .limbs = &[_]Limb{1}, .positive = true }; if (a.toConst().order(one) != .eq) { var unused = try Int.init(r.p.allocator); defer unused.deinit(); // TODO: divexact would be useful here // TODO: don't copy r.q for div try Int.divTrunc(&r.p, &unused, &r.p, &a); try Int.divTrunc(&r.q, &unused, &r.q, &a); } } }