Function gamma [src]

Alias for std.math.gamma.gamma

Returns the gamma function of x, gamma(x) = factorial(x - 1) for integer x. Special Cases: gamma(+-nan) = nan gamma(-inf) = nan gamma(n) = nan for negative integers gamma(-0.0) = -inf gamma(+0.0) = +inf gamma(+inf) = +inf

Prototype

pub fn gamma(comptime T: type, x: T) T

Parameters

T: typex: T

Example

test gamma { inline for (&.{ f32, f64 }) |T| { const eps = @sqrt(std.math.floatEps(T)); try expectApproxEqRel(@as(T, 120), gamma(T, 6), eps); try expectApproxEqRel(@as(T, 362880), gamma(T, 10), eps); try expectApproxEqRel(@as(T, 6402373705728000), gamma(T, 19), eps); try expectApproxEqRel(@as(T, 332.7590766955334570), gamma(T, 0.003), eps); try expectApproxEqRel(@as(T, 1.377260301981044573), gamma(T, 0.654), eps); try expectApproxEqRel(@as(T, 1.025393882573518478), gamma(T, 0.959), eps); try expectApproxEqRel(@as(T, 7.361898021467681690), gamma(T, 4.16), eps); try expectApproxEqRel(@as(T, 198337.2940287730753), gamma(T, 9.73), eps); try expectApproxEqRel(@as(T, 113718145797241.1666), gamma(T, 17.6), eps); try expectApproxEqRel(@as(T, -1.13860211111081424930673), gamma(T, -2.80), eps); try expectApproxEqRel(@as(T, 0.00018573407931875070158), gamma(T, -7.74), eps); try expectApproxEqRel(@as(T, -0.00000001647990903942825), gamma(T, -12.1), eps); } }

Source

pub fn gamma(comptime T: type, x: T) T { if (T != f32 and T != f64) { @compileError("gamma not implemented for " ++ @typeName(T)); } // common integer case first if (x == @trunc(x)) { // gamma(-inf) = nan // gamma(n) = nan for negative integers if (x < 0) { return std.math.nan(T); } // gamma(-0.0) = -inf // gamma(+0.0) = +inf if (x == 0) { return 1 / x; } if (x < integer_result_table.len) { const i = @as(u8, @intFromFloat(x)); return @floatCast(integer_result_table[i]); } } // below this, result underflows, but has a sign // negative for (-1, 0) // positive for (-2, -1) // negative for (-3, -2) // ... const lower_bound = if (T == f64) -184 else -42; if (x < lower_bound) { return if (@mod(x, 2) > 1) -0.0 else 0.0; } // above this, result overflows // gamma(+inf) = +inf const upper_bound = if (T == f64) 172 else 36; if (x > upper_bound) { return std.math.inf(T); } const abs = @abs(x); // perfect precision here if (abs < 0x1p-54) { return 1 / x; } const base = abs + lanczos_minus_half; const exponent = abs - 0.5; // error of y for correction, see // https://github.com/python/cpython/blob/5dc79e3d7f26a6a871a89ce3efc9f1bcee7bb447/Modules/mathmodule.c#L286-L324 const e = if (abs > lanczos_minus_half) base - abs - lanczos_minus_half else base - lanczos_minus_half - abs; const correction = lanczos * e / base; const initial = series(T, abs) * @exp(-base); // use reflection formula for negatives if (x < 0) { const reflected = -std.math.pi / (abs * sinpi(T, abs) * initial); const corrected = reflected - reflected * correction; const half_pow = std.math.pow(T, base, -0.5 * exponent); return corrected * half_pow * half_pow; } else { const corrected = initial + initial * correction; const half_pow = std.math.pow(T, base, 0.5 * exponent); return corrected * half_pow * half_pow; } }