Function gcd [src]

Alias for std.math.gcd.gcd

Returns the greatest common divisor (GCD) of two unsigned integers (a and b) which are not both zero. For example, the GCD of 8 and 12 is 4, that is, gcd(8, 12) == 4.

Prototype

pub fn gcd(a: anytype, b: anytype) @TypeOf(a, b)

Example

test gcd { const expectEqual = std.testing.expectEqual; try expectEqual(gcd(0, 5), 5); try expectEqual(gcd(5, 0), 5); try expectEqual(gcd(8, 12), 4); try expectEqual(gcd(12, 8), 4); try expectEqual(gcd(33, 77), 11); try expectEqual(gcd(77, 33), 11); try expectEqual(gcd(49865, 69811), 9973); try expectEqual(gcd(300_000, 2_300_000), 100_000); try expectEqual(gcd(90000000_000_000_000_000_000, 2), 2); try expectEqual(gcd(@as(u80, 90000000_000_000_000_000_000), 2), 2); try expectEqual(gcd(300_000, @as(u32, 2_300_000)), 100_000); }

Source

pub fn gcd(a: anytype, b: anytype) @TypeOf(a, b) { const N = switch (@TypeOf(a, b)) { // convert comptime_int to some sized int type for @ctz comptime_int => std.math.IntFittingRange(@min(a, b), @max(a, b)), else => |T| T, }; if (@typeInfo(N) != .int or @typeInfo(N).int.signedness != .unsigned) { @compileError("`a` and `b` must be usigned integers"); } // using an optimised form of Stein's algorithm: // https://en.wikipedia.org/wiki/Binary_GCD_algorithm std.debug.assert(a != 0 or b != 0); if (a == 0) return b; if (b == 0) return a; var x: N = a; var y: N = b; const xz = @ctz(x); const yz = @ctz(y); const shift = @min(xz, yz); x >>= @intCast(xz); y >>= @intCast(yz); var diff = y -% x; while (diff != 0) : (diff = y -% x) { // ctz is invariant under negation, we // put it here to ease data dependencies, // makes the CPU happy. const zeros = @ctz(diff); if (x > y) diff = -%diff; y = @min(x, y); x = diff >> @intCast(zeros); } return y << @intCast(shift); }