Function lgamma [src]

Alias for std.math.gamma.lgamma

Returns the natural logarithm of the absolute value of the gamma function. Special Cases: lgamma(+-nan) = nan lgamma(+-inf) = +inf lgamma(n) = +inf for negative integers lgamma(+-0.0) = +inf lgamma(1) = +0.0 lgamma(2) = +0.0

Prototype

pub fn lgamma(comptime T: type, x: T) T

Parameters

T: typex: T

Example

test lgamma { inline for (&.{ f32, f64 }) |T| { const eps = @sqrt(std.math.floatEps(T)); try expectApproxEqRel(@as(T, @log(24.0)), lgamma(T, 5), eps); try expectApproxEqRel(@as(T, @log(20922789888000.0)), lgamma(T, 17), eps); try expectApproxEqRel(@as(T, @log(2432902008176640000.0)), lgamma(T, 21), eps); try expectApproxEqRel(@as(T, 2.201821590438859327), lgamma(T, 0.105), eps); try expectApproxEqRel(@as(T, 1.275416975248413231), lgamma(T, 0.253), eps); try expectApproxEqRel(@as(T, 0.130463884049976732), lgamma(T, 0.823), eps); try expectApproxEqRel(@as(T, 43.24395772148497989), lgamma(T, 21.3), eps); try expectApproxEqRel(@as(T, 110.6908958012102623), lgamma(T, 41.1), eps); try expectApproxEqRel(@as(T, 215.2123266224689711), lgamma(T, 67.4), eps); try expectApproxEqRel(@as(T, -122.605958469563489), lgamma(T, -43.6), eps); try expectApproxEqRel(@as(T, -278.633885462703133), lgamma(T, -81.4), eps); try expectApproxEqRel(@as(T, -333.247676253238363), lgamma(T, -93.6), eps); } }

Source

pub fn lgamma(comptime T: type, x: T) T { if (T != f32 and T != f64) { @compileError("gamma not implemented for " ++ @typeName(T)); } // common integer case first if (x == @trunc(x)) { // lgamma(-inf) = +inf // lgamma(n) = +inf for negative integers // lgamma(+-0.0) = +inf if (x <= 0) { return std.math.inf(T); } // lgamma(1) = +0.0 // lgamma(2) = +0.0 if (x < integer_result_table.len) { const i = @as(u8, @intFromFloat(x)); return @log(@as(T, @floatCast(integer_result_table[i]))); } // lgamma(+inf) = +inf if (std.math.isPositiveInf(x)) { return x; } } const abs = @abs(x); // perfect precision here if (abs < 0x1p-54) { return -@log(abs); } // obvious approach when overflow is not a problem const upper_bound = if (T == f64) 128 else 26; if (abs < upper_bound) { return @log(@abs(gamma(T, x))); } const log_base = @log(abs + lanczos_minus_half) - 1; const exponent = abs - 0.5; const log_series = @log(series(T, abs)); const initial = exponent * log_base + log_series - lanczos; // use reflection formula for negatives if (x < 0) { const reflected = std.math.pi / (abs * sinpi(T, abs)); return @log(@abs(reflected)) - initial; } return initial; }