Function lgamma [src]
Alias for std.math.gamma.lgamma
Returns the natural logarithm of the absolute value of the gamma function.
Special Cases:
lgamma(+-nan) = nan
lgamma(+-inf) = +inf
lgamma(n) = +inf for negative integers
lgamma(+-0.0) = +inf
lgamma(1) = +0.0
lgamma(2) = +0.0
Prototype
pub fn lgamma(comptime T: type, x: T) T
Parameters
T: type
x: T
Example
test lgamma {
inline for (&.{ f32, f64 }) |T| {
const eps = @sqrt(std.math.floatEps(T));
try expectApproxEqRel(@as(T, @log(24.0)), lgamma(T, 5), eps);
try expectApproxEqRel(@as(T, @log(20922789888000.0)), lgamma(T, 17), eps);
try expectApproxEqRel(@as(T, @log(2432902008176640000.0)), lgamma(T, 21), eps);
try expectApproxEqRel(@as(T, 2.201821590438859327), lgamma(T, 0.105), eps);
try expectApproxEqRel(@as(T, 1.275416975248413231), lgamma(T, 0.253), eps);
try expectApproxEqRel(@as(T, 0.130463884049976732), lgamma(T, 0.823), eps);
try expectApproxEqRel(@as(T, 43.24395772148497989), lgamma(T, 21.3), eps);
try expectApproxEqRel(@as(T, 110.6908958012102623), lgamma(T, 41.1), eps);
try expectApproxEqRel(@as(T, 215.2123266224689711), lgamma(T, 67.4), eps);
try expectApproxEqRel(@as(T, -122.605958469563489), lgamma(T, -43.6), eps);
try expectApproxEqRel(@as(T, -278.633885462703133), lgamma(T, -81.4), eps);
try expectApproxEqRel(@as(T, -333.247676253238363), lgamma(T, -93.6), eps);
}
}
Source
pub fn lgamma(comptime T: type, x: T) T {
if (T != f32 and T != f64) {
@compileError("gamma not implemented for " ++ @typeName(T));
}
// common integer case first
if (x == @trunc(x)) {
// lgamma(-inf) = +inf
// lgamma(n) = +inf for negative integers
// lgamma(+-0.0) = +inf
if (x <= 0) {
return std.math.inf(T);
}
// lgamma(1) = +0.0
// lgamma(2) = +0.0
if (x < integer_result_table.len) {
const i = @as(u8, @intFromFloat(x));
return @log(@as(T, @floatCast(integer_result_table[i])));
}
// lgamma(+inf) = +inf
if (std.math.isPositiveInf(x)) {
return x;
}
}
const abs = @abs(x);
// perfect precision here
if (abs < 0x1p-54) {
return -@log(abs);
}
// obvious approach when overflow is not a problem
const upper_bound = if (T == f64) 128 else 26;
if (abs < upper_bound) {
return @log(@abs(gamma(T, x)));
}
const log_base = @log(abs + lanczos_minus_half) - 1;
const exponent = abs - 0.5;
const log_series = @log(series(T, abs));
const initial = exponent * log_base + log_series - lanczos;
// use reflection formula for negatives
if (x < 0) {
const reflected = std.math.pi / (abs * sinpi(T, abs));
return @log(@abs(reflected)) - initial;
}
return initial;
}