Function log_int [src]

Alias for std.math.log_int.log_int

Returns the logarithm of x for the provided base, rounding down to the nearest integer. Asserts that base > 1 and x > 0.

Prototype

pub fn log_int(comptime T: type, base: T, x: T) Log2Int(T)

Parameters

T: typebase: Tx: T

Source

pub fn log_int(comptime T: type, base: T, x: T) Log2Int(T) { const valid = switch (@typeInfo(T)) { .comptime_int => true, .int => |IntType| IntType.signedness == .unsigned, else => false, }; if (!valid) @compileError("log_int requires an unsigned integer, found " ++ @typeName(T)); assert(base > 1 and x > 0); if (base == 2) return math.log2_int(T, x); // Let's denote by [y] the integer part of y. // Throughout the iteration the following invariant is preserved: // power = base ^ exponent // Safety and termination. // // We never overflow inside the loop because when we enter the loop we have // power <= [maxInt(T) / base] // therefore // power * base <= maxInt(T) // is a valid multiplication for type `T` and // exponent + 1 <= log(base, maxInt(T)) <= log2(maxInt(T)) <= maxInt(Log2Int(T)) // is a valid addition for type `Log2Int(T)`. // // This implies also termination because power is strictly increasing, // hence it must eventually surpass [x / base] < maxInt(T) and we then exit the loop. var exponent: Log2Int(T) = 0; var power: T = 1; while (power <= x / base) { power *= base; exponent += 1; } // If we never entered the loop we must have // [x / base] < 1 // hence // x <= [x / base] * base < base // thus the result is 0. We can then return exponent, which is still 0. // // Otherwise, if we entered the loop at least once, // when we exit the loop we have that power is exactly divisible by base and // power / base <= [x / base] < power // hence // power <= [x / base] * base <= x < power * base // This means that // base^exponent <= x < base^(exponent+1) // hence the result is exponent. return exponent; }