Function log_int [src]
Alias for std.math.log_int.log_int
Returns the logarithm of x for the provided base, rounding down to the nearest integer.
Asserts that base > 1 and x > 0.
Prototype
pub fn log_int(comptime T: type, base: T, x: T) Log2Int(T)
Parameters
T: type
base: T
x: T
Source
pub fn log_int(comptime T: type, base: T, x: T) Log2Int(T) {
const valid = switch (@typeInfo(T)) {
.comptime_int => true,
.int => |IntType| IntType.signedness == .unsigned,
else => false,
};
if (!valid) @compileError("log_int requires an unsigned integer, found " ++ @typeName(T));
assert(base > 1 and x > 0);
if (base == 2) return math.log2_int(T, x);
// Let's denote by [y] the integer part of y.
// Throughout the iteration the following invariant is preserved:
// power = base ^ exponent
// Safety and termination.
//
// We never overflow inside the loop because when we enter the loop we have
// power <= [maxInt(T) / base]
// therefore
// power * base <= maxInt(T)
// is a valid multiplication for type `T` and
// exponent + 1 <= log(base, maxInt(T)) <= log2(maxInt(T)) <= maxInt(Log2Int(T))
// is a valid addition for type `Log2Int(T)`.
//
// This implies also termination because power is strictly increasing,
// hence it must eventually surpass [x / base] < maxInt(T) and we then exit the loop.
var exponent: Log2Int(T) = 0;
var power: T = 1;
while (power <= x / base) {
power *= base;
exponent += 1;
}
// If we never entered the loop we must have
// [x / base] < 1
// hence
// x <= [x / base] * base < base
// thus the result is 0. We can then return exponent, which is still 0.
//
// Otherwise, if we entered the loop at least once,
// when we exit the loop we have that power is exactly divisible by base and
// power / base <= [x / base] < power
// hence
// power <= [x / base] * base <= x < power * base
// This means that
// base^exponent <= x < base^(exponent+1)
// hence the result is exponent.
return exponent;
}