Function pow [src]
Alias for std.math.pow.pow
Returns x raised to the power of y (x^y).
Special Cases:
pow(x, +-0) = 1 for any x
pow(1, y) = 1 for any y
pow(x, 1) = x for any x
pow(nan, y) = nan
pow(x, nan) = nan
pow(+-0, y) = +-inf for y an odd integer < 0
pow(+-0, -inf) = +inf
pow(+-0, +inf) = +0
pow(+-0, y) = +inf for finite y < 0 and not an odd integer
pow(+-0, y) = +-0 for y an odd integer > 0
pow(+-0, y) = +0 for finite y > 0 and not an odd integer
pow(-1, +-inf) = 1
pow(x, +inf) = +inf for |x| > 1
pow(x, -inf) = +0 for |x| > 1
pow(x, +inf) = +0 for |x| < 1
pow(x, -inf) = +inf for |x| < 1
pow(+inf, y) = +inf for y > 0
pow(+inf, y) = +0 for y < 0
pow(-inf, y) = pow(-0, -y)
pow(x, y) = nan for finite x < 0 and finite non-integer y
Prototype
pub fn pow(comptime T: type, x: T, y: T) T
Parameters
T: type
x: T
y: T
Example
test pow {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f32, pow(f32, 0.0, 3.3), 0.0, epsilon));
try expect(math.approxEqAbs(f32, pow(f32, 0.8923, 3.3), 0.686572, epsilon));
try expect(math.approxEqAbs(f32, pow(f32, 0.2, 3.3), 0.004936, epsilon));
try expect(math.approxEqAbs(f32, pow(f32, 1.5, 3.3), 3.811546, epsilon));
try expect(math.approxEqAbs(f32, pow(f32, 37.45, 3.3), 155736.703125, epsilon));
try expect(math.approxEqAbs(f32, pow(f32, 89.123, 3.3), 2722489.5, epsilon));
try expect(math.approxEqAbs(f64, pow(f64, 0.0, 3.3), 0.0, epsilon));
try expect(math.approxEqAbs(f64, pow(f64, 0.8923, 3.3), 0.686572, epsilon));
try expect(math.approxEqAbs(f64, pow(f64, 0.2, 3.3), 0.004936, epsilon));
try expect(math.approxEqAbs(f64, pow(f64, 1.5, 3.3), 3.811546, epsilon));
try expect(math.approxEqAbs(f64, pow(f64, 37.45, 3.3), 155736.7160616, epsilon));
try expect(math.approxEqAbs(f64, pow(f64, 89.123, 3.3), 2722490.231436, epsilon));
}
Source
pub fn pow(comptime T: type, x: T, y: T) T {
if (@typeInfo(T) == .int) {
return math.powi(T, x, y) catch unreachable;
}
if (T != f32 and T != f64) {
@compileError("pow not implemented for " ++ @typeName(T));
}
// pow(x, +-0) = 1 for all x
// pow(1, y) = 1 for all y
if (y == 0 or x == 1) {
return 1;
}
// pow(nan, y) = nan for all y
// pow(x, nan) = nan for all x
if (math.isNan(x) or math.isNan(y)) {
@branchHint(.unlikely);
return math.nan(T);
}
// pow(x, 1) = x for all x
if (y == 1) {
return x;
}
if (x == 0) {
if (y < 0) {
// pow(+-0, y) = +- 0 for y an odd integer
if (isOddInteger(y)) {
return math.copysign(math.inf(T), x);
}
// pow(+-0, y) = +inf for y an even integer
else {
return math.inf(T);
}
} else {
if (isOddInteger(y)) {
return x;
} else {
return 0;
}
}
}
if (math.isInf(y)) {
// pow(-1, inf) = 1 for all x
if (x == -1) {
return 1.0;
}
// pow(x, +inf) = +0 for |x| < 1
// pow(x, -inf) = +0 for |x| > 1
else if ((@abs(x) < 1) == math.isPositiveInf(y)) {
return 0;
}
// pow(x, -inf) = +inf for |x| < 1
// pow(x, +inf) = +inf for |x| > 1
else {
return math.inf(T);
}
}
if (math.isInf(x)) {
if (math.isNegativeInf(x)) {
return pow(T, 1 / x, -y);
}
// pow(+inf, y) = +0 for y < 0
else if (y < 0) {
return 0;
}
// pow(+inf, y) = +0 for y > 0
else if (y > 0) {
return math.inf(T);
}
}
// special case sqrt
if (y == 0.5) {
return @sqrt(x);
}
if (y == -0.5) {
return 1 / @sqrt(x);
}
const r1 = math.modf(@abs(y));
var yi = r1.ipart;
var yf = r1.fpart;
if (yf != 0 and x < 0) {
return math.nan(T);
}
if (yi >= 1 << (@typeInfo(T).float.bits - 1)) {
return @exp(y * @log(x));
}
// a = a1 * 2^ae
var a1: T = 1.0;
var ae: i32 = 0;
// a *= x^yf
if (yf != 0) {
if (yf > 0.5) {
yf -= 1;
yi += 1;
}
a1 = @exp(yf * @log(x));
}
// a *= x^yi
const r2 = math.frexp(x);
var xe = r2.exponent;
var x1 = r2.significand;
var i = @as(std.meta.Int(.signed, @typeInfo(T).float.bits), @intFromFloat(yi));
while (i != 0) : (i >>= 1) {
const overflow_shift = math.floatExponentBits(T) + 1;
if (xe < -(1 << overflow_shift) or (1 << overflow_shift) < xe) {
// catch xe before it overflows the left shift below
// Since i != 0 it has at least one bit still set, so ae will accumulate xe
// on at least one more iteration, ae += xe is a lower bound on ae
// the lower bound on ae exceeds the size of a float exp
// so the final call to Ldexp will produce under/overflow (0/Inf)
ae += xe;
break;
}
if (i & 1 == 1) {
a1 *= x1;
ae += xe;
}
x1 *= x1;
xe <<= 1;
if (x1 < 0.5) {
x1 += x1;
xe -= 1;
}
}
// a *= a1 * 2^ae
if (y < 0) {
a1 = 1 / a1;
ae = -ae;
}
return math.scalbn(a1, ae);
}