struct Allocator [src]
Alias for std.mem.Allocator
The standard memory allocation interface.
Fields
ptr: *anyopaqueThe type erased pointer to the allocator implementation.
Any comparison of this field may result in illegal behavior, since it may
be set to undefined in cases where the allocator implementation does not
have any associated state.
vtable: *const VTable
Members
- alignedAlloc (Function)
- alloc (Function)
- allocAdvancedWithRetAddr (Function)
- allocSentinel (Function)
- allocWithOptions (Function)
- allocWithOptionsRetAddr (Function)
- create (Function)
- destroy (Function)
- dupe (Function)
- dupeZ (Function)
- Error (Error Set)
- free (Function)
- Log2Align (Type)
- noFree (Function)
- noRemap (Function)
- noResize (Function)
- rawAlloc (Function)
- rawFree (Function)
- rawRemap (Function)
- rawResize (Function)
- realloc (Function)
- reallocAdvanced (Function)
- remap (Function)
- resize (Function)
- VTable (struct)
Source
//! The standard memory allocation interface.
const std = @import("../std.zig");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;
const Allocator = @This();
const builtin = @import("builtin");
const Alignment = std.mem.Alignment;
pub const Error = error{OutOfMemory};
pub const Log2Align = math.Log2Int(usize);
/// The type erased pointer to the allocator implementation.
///
/// Any comparison of this field may result in illegal behavior, since it may
/// be set to `undefined` in cases where the allocator implementation does not
/// have any associated state.
ptr: *anyopaque,
vtable: *const VTable,
pub const VTable = struct {
/// Return a pointer to `len` bytes with specified `alignment`, or return
/// `null` indicating the allocation failed.
///
/// `ret_addr` is optionally provided as the first return address of the
/// allocation call stack. If the value is `0` it means no return address
/// has been provided.
alloc: *const fn (*anyopaque, len: usize, alignment: Alignment, ret_addr: usize) ?[*]u8,
/// Attempt to expand or shrink memory in place.
///
/// `memory.len` must equal the length requested from the most recent
/// successful call to `alloc`, `resize`, or `remap`. `alignment` must
/// equal the same value that was passed as the `alignment` parameter to
/// the original `alloc` call.
///
/// A result of `true` indicates the resize was successful and the
/// allocation now has the same address but a size of `new_len`. `false`
/// indicates the resize could not be completed without moving the
/// allocation to a different address.
///
/// `new_len` must be greater than zero.
///
/// `ret_addr` is optionally provided as the first return address of the
/// allocation call stack. If the value is `0` it means no return address
/// has been provided.
resize: *const fn (*anyopaque, memory: []u8, alignment: Alignment, new_len: usize, ret_addr: usize) bool,
/// Attempt to expand or shrink memory, allowing relocation.
///
/// `memory.len` must equal the length requested from the most recent
/// successful call to `alloc`, `resize`, or `remap`. `alignment` must
/// equal the same value that was passed as the `alignment` parameter to
/// the original `alloc` call.
///
/// A non-`null` return value indicates the resize was successful. The
/// allocation may have same address, or may have been relocated. In either
/// case, the allocation now has size of `new_len`. A `null` return value
/// indicates that the resize would be equivalent to allocating new memory,
/// copying the bytes from the old memory, and then freeing the old memory.
/// In such case, it is more efficient for the caller to perform the copy.
///
/// `new_len` must be greater than zero.
///
/// `ret_addr` is optionally provided as the first return address of the
/// allocation call stack. If the value is `0` it means no return address
/// has been provided.
remap: *const fn (*anyopaque, memory: []u8, alignment: Alignment, new_len: usize, ret_addr: usize) ?[*]u8,
/// Free and invalidate a region of memory.
///
/// `memory.len` must equal the length requested from the most recent
/// successful call to `alloc`, `resize`, or `remap`. `alignment` must
/// equal the same value that was passed as the `alignment` parameter to
/// the original `alloc` call.
///
/// `ret_addr` is optionally provided as the first return address of the
/// allocation call stack. If the value is `0` it means no return address
/// has been provided.
free: *const fn (*anyopaque, memory: []u8, alignment: Alignment, ret_addr: usize) void,
};
pub fn noResize(
self: *anyopaque,
memory: []u8,
alignment: Alignment,
new_len: usize,
ret_addr: usize,
) bool {
_ = self;
_ = memory;
_ = alignment;
_ = new_len;
_ = ret_addr;
return false;
}
pub fn noRemap(
self: *anyopaque,
memory: []u8,
alignment: Alignment,
new_len: usize,
ret_addr: usize,
) ?[*]u8 {
_ = self;
_ = memory;
_ = alignment;
_ = new_len;
_ = ret_addr;
return null;
}
pub fn noFree(
self: *anyopaque,
memory: []u8,
alignment: Alignment,
ret_addr: usize,
) void {
_ = self;
_ = memory;
_ = alignment;
_ = ret_addr;
}
/// This function is not intended to be called except from within the
/// implementation of an `Allocator`.
pub inline fn rawAlloc(a: Allocator, len: usize, alignment: Alignment, ret_addr: usize) ?[*]u8 {
return a.vtable.alloc(a.ptr, len, alignment, ret_addr);
}
/// This function is not intended to be called except from within the
/// implementation of an `Allocator`.
pub inline fn rawResize(a: Allocator, memory: []u8, alignment: Alignment, new_len: usize, ret_addr: usize) bool {
return a.vtable.resize(a.ptr, memory, alignment, new_len, ret_addr);
}
/// This function is not intended to be called except from within the
/// implementation of an `Allocator`.
pub inline fn rawRemap(a: Allocator, memory: []u8, alignment: Alignment, new_len: usize, ret_addr: usize) ?[*]u8 {
return a.vtable.remap(a.ptr, memory, alignment, new_len, ret_addr);
}
/// This function is not intended to be called except from within the
/// implementation of an `Allocator`.
pub inline fn rawFree(a: Allocator, memory: []u8, alignment: Alignment, ret_addr: usize) void {
return a.vtable.free(a.ptr, memory, alignment, ret_addr);
}
/// Returns a pointer to undefined memory.
/// Call `destroy` with the result to free the memory.
pub fn create(a: Allocator, comptime T: type) Error!*T {
if (@sizeOf(T) == 0) return @as(*T, @ptrFromInt(math.maxInt(usize)));
const ptr: *T = @ptrCast(try a.allocBytesWithAlignment(@alignOf(T), @sizeOf(T), @returnAddress()));
return ptr;
}
/// `ptr` should be the return value of `create`, or otherwise
/// have the same address and alignment property.
pub fn destroy(self: Allocator, ptr: anytype) void {
const info = @typeInfo(@TypeOf(ptr)).pointer;
if (info.size != .one) @compileError("ptr must be a single item pointer");
const T = info.child;
if (@sizeOf(T) == 0) return;
const non_const_ptr = @as([*]u8, @ptrCast(@constCast(ptr)));
self.rawFree(non_const_ptr[0..@sizeOf(T)], .fromByteUnits(info.alignment), @returnAddress());
}
/// Allocates an array of `n` items of type `T` and sets all the
/// items to `undefined`. Depending on the Allocator
/// implementation, it may be required to call `free` once the
/// memory is no longer needed, to avoid a resource leak. If the
/// `Allocator` implementation is unknown, then correct code will
/// call `free` when done.
///
/// For allocating a single item, see `create`.
pub fn alloc(self: Allocator, comptime T: type, n: usize) Error![]T {
return self.allocAdvancedWithRetAddr(T, null, n, @returnAddress());
}
pub fn allocWithOptions(
self: Allocator,
comptime Elem: type,
n: usize,
/// null means naturally aligned
comptime optional_alignment: ?u29,
comptime optional_sentinel: ?Elem,
) Error!AllocWithOptionsPayload(Elem, optional_alignment, optional_sentinel) {
return self.allocWithOptionsRetAddr(Elem, n, optional_alignment, optional_sentinel, @returnAddress());
}
pub fn allocWithOptionsRetAddr(
self: Allocator,
comptime Elem: type,
n: usize,
/// null means naturally aligned
comptime optional_alignment: ?u29,
comptime optional_sentinel: ?Elem,
return_address: usize,
) Error!AllocWithOptionsPayload(Elem, optional_alignment, optional_sentinel) {
if (optional_sentinel) |sentinel| {
const ptr = try self.allocAdvancedWithRetAddr(Elem, optional_alignment, n + 1, return_address);
ptr[n] = sentinel;
return ptr[0..n :sentinel];
} else {
return self.allocAdvancedWithRetAddr(Elem, optional_alignment, n, return_address);
}
}
fn AllocWithOptionsPayload(comptime Elem: type, comptime alignment: ?u29, comptime sentinel: ?Elem) type {
if (sentinel) |s| {
return [:s]align(alignment orelse @alignOf(Elem)) Elem;
} else {
return []align(alignment orelse @alignOf(Elem)) Elem;
}
}
/// Allocates an array of `n + 1` items of type `T` and sets the first `n`
/// items to `undefined` and the last item to `sentinel`. Depending on the
/// Allocator implementation, it may be required to call `free` once the
/// memory is no longer needed, to avoid a resource leak. If the
/// `Allocator` implementation is unknown, then correct code will
/// call `free` when done.
///
/// For allocating a single item, see `create`.
pub fn allocSentinel(
self: Allocator,
comptime Elem: type,
n: usize,
comptime sentinel: Elem,
) Error![:sentinel]Elem {
return self.allocWithOptionsRetAddr(Elem, n, null, sentinel, @returnAddress());
}
pub fn alignedAlloc(
self: Allocator,
comptime T: type,
/// null means naturally aligned
comptime alignment: ?u29,
n: usize,
) Error![]align(alignment orelse @alignOf(T)) T {
return self.allocAdvancedWithRetAddr(T, alignment, n, @returnAddress());
}
pub inline fn allocAdvancedWithRetAddr(
self: Allocator,
comptime T: type,
/// null means naturally aligned
comptime alignment: ?u29,
n: usize,
return_address: usize,
) Error![]align(alignment orelse @alignOf(T)) T {
const a = alignment orelse @alignOf(T);
const ptr: [*]align(a) T = @ptrCast(try self.allocWithSizeAndAlignment(@sizeOf(T), a, n, return_address));
return ptr[0..n];
}
fn allocWithSizeAndAlignment(self: Allocator, comptime size: usize, comptime alignment: u29, n: usize, return_address: usize) Error![*]align(alignment) u8 {
const byte_count = math.mul(usize, size, n) catch return Error.OutOfMemory;
return self.allocBytesWithAlignment(alignment, byte_count, return_address);
}
fn allocBytesWithAlignment(self: Allocator, comptime alignment: u29, byte_count: usize, return_address: usize) Error![*]align(alignment) u8 {
if (byte_count == 0) {
const ptr = comptime std.mem.alignBackward(usize, math.maxInt(usize), alignment);
return @as([*]align(alignment) u8, @ptrFromInt(ptr));
}
const byte_ptr = self.rawAlloc(byte_count, .fromByteUnits(alignment), return_address) orelse return Error.OutOfMemory;
@memset(byte_ptr[0..byte_count], undefined);
return @alignCast(byte_ptr);
}
/// Request to modify the size of an allocation.
///
/// It is guaranteed to not move the pointer, however the allocator
/// implementation may refuse the resize request by returning `false`.
///
/// `allocation` may be an empty slice, in which case a new allocation is made.
///
/// `new_len` may be zero, in which case the allocation is freed.
pub fn resize(self: Allocator, allocation: anytype, new_len: usize) bool {
const Slice = @typeInfo(@TypeOf(allocation)).pointer;
const T = Slice.child;
const alignment = Slice.alignment;
if (new_len == 0) {
self.free(allocation);
return true;
}
if (allocation.len == 0) {
return false;
}
const old_memory = mem.sliceAsBytes(allocation);
// I would like to use saturating multiplication here, but LLVM cannot lower it
// on WebAssembly: https://github.com/ziglang/zig/issues/9660
//const new_len_bytes = new_len *| @sizeOf(T);
const new_len_bytes = math.mul(usize, @sizeOf(T), new_len) catch return false;
return self.rawResize(old_memory, .fromByteUnits(alignment), new_len_bytes, @returnAddress());
}
/// Request to modify the size of an allocation, allowing relocation.
///
/// A non-`null` return value indicates the resize was successful. The
/// allocation may have same address, or may have been relocated. In either
/// case, the allocation now has size of `new_len`. A `null` return value
/// indicates that the resize would be equivalent to allocating new memory,
/// copying the bytes from the old memory, and then freeing the old memory.
/// In such case, it is more efficient for the caller to perform those
/// operations.
///
/// `allocation` may be an empty slice, in which case `null` is returned,
/// unless `new_len` is also 0, in which case `allocation` is returned.
///
/// `new_len` may be zero, in which case the allocation is freed.
///
/// If the allocation's elements' type is zero bytes sized, `allocation.len` is set to `new_len`.
pub fn remap(self: Allocator, allocation: anytype, new_len: usize) t: {
const Slice = @typeInfo(@TypeOf(allocation)).pointer;
break :t ?[]align(Slice.alignment) Slice.child;
} {
const Slice = @typeInfo(@TypeOf(allocation)).pointer;
const T = Slice.child;
const alignment = Slice.alignment;
if (new_len == 0) {
self.free(allocation);
return allocation[0..0];
}
if (allocation.len == 0) {
return null;
}
if (@sizeOf(T) == 0) {
var new_memory = allocation;
new_memory.len = new_len;
return new_memory;
}
const old_memory = mem.sliceAsBytes(allocation);
// I would like to use saturating multiplication here, but LLVM cannot lower it
// on WebAssembly: https://github.com/ziglang/zig/issues/9660
//const new_len_bytes = new_len *| @sizeOf(T);
const new_len_bytes = math.mul(usize, @sizeOf(T), new_len) catch return null;
const new_ptr = self.rawRemap(old_memory, .fromByteUnits(alignment), new_len_bytes, @returnAddress()) orelse return null;
const new_memory: []align(alignment) u8 = @alignCast(new_ptr[0..new_len_bytes]);
return mem.bytesAsSlice(T, new_memory);
}
/// This function requests a new byte size for an existing allocation, which
/// can be larger, smaller, or the same size as the old memory allocation.
///
/// If `new_n` is 0, this is the same as `free` and it always succeeds.
///
/// `old_mem` may have length zero, which makes a new allocation.
///
/// This function only fails on out-of-memory conditions, unlike:
/// * `remap` which returns `null` when the `Allocator` implementation cannot
/// do the realloc more efficiently than the caller
/// * `resize` which returns `false` when the `Allocator` implementation cannot
/// change the size without relocating the allocation.
pub fn realloc(self: Allocator, old_mem: anytype, new_n: usize) t: {
const Slice = @typeInfo(@TypeOf(old_mem)).pointer;
break :t Error![]align(Slice.alignment) Slice.child;
} {
return self.reallocAdvanced(old_mem, new_n, @returnAddress());
}
pub fn reallocAdvanced(
self: Allocator,
old_mem: anytype,
new_n: usize,
return_address: usize,
) t: {
const Slice = @typeInfo(@TypeOf(old_mem)).pointer;
break :t Error![]align(Slice.alignment) Slice.child;
} {
const Slice = @typeInfo(@TypeOf(old_mem)).pointer;
const T = Slice.child;
if (old_mem.len == 0) {
return self.allocAdvancedWithRetAddr(T, Slice.alignment, new_n, return_address);
}
if (new_n == 0) {
self.free(old_mem);
const ptr = comptime std.mem.alignBackward(usize, math.maxInt(usize), Slice.alignment);
return @as([*]align(Slice.alignment) T, @ptrFromInt(ptr))[0..0];
}
const old_byte_slice = mem.sliceAsBytes(old_mem);
const byte_count = math.mul(usize, @sizeOf(T), new_n) catch return Error.OutOfMemory;
// Note: can't set shrunk memory to undefined as memory shouldn't be modified on realloc failure
if (self.rawRemap(old_byte_slice, .fromByteUnits(Slice.alignment), byte_count, return_address)) |p| {
const new_bytes: []align(Slice.alignment) u8 = @alignCast(p[0..byte_count]);
return mem.bytesAsSlice(T, new_bytes);
}
const new_mem = self.rawAlloc(byte_count, .fromByteUnits(Slice.alignment), return_address) orelse
return error.OutOfMemory;
const copy_len = @min(byte_count, old_byte_slice.len);
@memcpy(new_mem[0..copy_len], old_byte_slice[0..copy_len]);
@memset(old_byte_slice, undefined);
self.rawFree(old_byte_slice, .fromByteUnits(Slice.alignment), return_address);
const new_bytes: []align(Slice.alignment) u8 = @alignCast(new_mem[0..byte_count]);
return mem.bytesAsSlice(T, new_bytes);
}
/// Free an array allocated with `alloc`.
/// If memory has length 0, free is a no-op.
/// To free a single item, see `destroy`.
pub fn free(self: Allocator, memory: anytype) void {
const Slice = @typeInfo(@TypeOf(memory)).pointer;
const bytes = mem.sliceAsBytes(memory);
const bytes_len = bytes.len + if (Slice.sentinel() != null) @sizeOf(Slice.child) else 0;
if (bytes_len == 0) return;
const non_const_ptr = @constCast(bytes.ptr);
@memset(non_const_ptr[0..bytes_len], undefined);
self.rawFree(non_const_ptr[0..bytes_len], .fromByteUnits(Slice.alignment), @returnAddress());
}
/// Copies `m` to newly allocated memory. Caller owns the memory.
pub fn dupe(allocator: Allocator, comptime T: type, m: []const T) Error![]T {
const new_buf = try allocator.alloc(T, m.len);
@memcpy(new_buf, m);
return new_buf;
}
/// Copies `m` to newly allocated memory, with a null-terminated element. Caller owns the memory.
pub fn dupeZ(allocator: Allocator, comptime T: type, m: []const T) Error![:0]T {
const new_buf = try allocator.alloc(T, m.len + 1);
@memcpy(new_buf[0..m.len], m);
new_buf[m.len] = 0;
return new_buf[0..m.len :0];
}