struct tls [src]

Alias for std.os.linux.tls

This file implements the two TLS variants [1] used by ELF-based systems. Note that, in reality, Variant I has two sub-variants. It is important to understand that the term TCB (Thread Control Block) is overloaded here. Official ABI documentation uses it simply to mean the ABI TCB, i.e. a small area of ABI-defined data, usually one or two words (see the AbiTcb type below). People will also often use TCB to refer to the libc TCB, which can be any size and contain anything. (One could even omit it!) We refer to the latter as the Zig TCB; see the ZigTcb type below. [1] https://www.akkadia.org/drepper/tls.pdf

Members

Source

//! This file implements the two TLS variants [1] used by ELF-based systems. Note that, in reality, //! Variant I has two sub-variants. //! //! It is important to understand that the term TCB (Thread Control Block) is overloaded here. //! Official ABI documentation uses it simply to mean the ABI TCB, i.e. a small area of ABI-defined //! data, usually one or two words (see the `AbiTcb` type below). People will also often use TCB to //! refer to the libc TCB, which can be any size and contain anything. (One could even omit it!) We //! refer to the latter as the Zig TCB; see the `ZigTcb` type below. //! //! [1] https://www.akkadia.org/drepper/tls.pdf const std = @import("std"); const mem = std.mem; const elf = std.elf; const math = std.math; const assert = std.debug.assert; const native_arch = @import("builtin").cpu.arch; const linux = std.os.linux; const posix = std.posix; const page_size_min = std.heap.page_size_min; /// Represents an ELF TLS variant. /// /// In all variants, the TP and the TLS blocks must be aligned to the `p_align` value in the /// `PT_TLS` ELF program header. Everything else has natural alignment. /// /// The location of the DTV does not actually matter. For simplicity, we put it in the TLS area, but /// there is no actual ABI requirement that it reside there. const Variant = enum { /// The original Variant I: /// /// ---------------------------------------- /// | DTV | Zig TCB | ABI TCB | TLS Blocks | /// ----------------^----------------------- /// `-- The TP register points here. /// /// The layout in this variant necessitates separate alignment of both the TP and the TLS /// blocks. /// /// The first word in the ABI TCB points to the DTV. For some architectures, there may be a /// second word with an unspecified meaning. I_original, /// The modified Variant I: /// /// --------------------------------------------------- /// | DTV | Zig TCB | ABI TCB | [Offset] | TLS Blocks | /// -------------------------------------^------------- /// `-- The TP register points here. /// /// The offset (which can be zero) is applied to the TP only; there is never physical gap /// between the ABI TCB and the TLS blocks. This implies that we only need to align the TP. /// /// The first (and only) word in the ABI TCB points to the DTV. I_modified, /// Variant II: /// /// ---------------------------------------- /// | TLS Blocks | ABI TCB | Zig TCB | DTV | /// -------------^-------------------------- /// `-- The TP register points here. /// /// The first (and only) word in the ABI TCB points to the ABI TCB itself. II, }; const current_variant: Variant = switch (native_arch) { .arc, .arm, .armeb, .aarch64, .aarch64_be, .csky, .thumb, .thumbeb, => .I_original, .loongarch32, .loongarch64, .m68k, .mips, .mipsel, .mips64, .mips64el, .powerpc, .powerpcle, .powerpc64, .powerpc64le, .riscv32, .riscv64, => .I_modified, .hexagon, .s390x, .sparc, .sparc64, .x86, .x86_64, => .II, else => @compileError("undefined TLS variant for this architecture"), }; /// The Offset value for the modified Variant I. const current_tp_offset = switch (native_arch) { .m68k, .mips, .mipsel, .mips64, .mips64el, .powerpc, .powerpcle, .powerpc64, .powerpc64le, => 0x7000, else => 0, }; /// Usually only used by the modified Variant I. const current_dtv_offset = switch (native_arch) { .m68k, .mips, .mipsel, .mips64, .mips64el, .powerpc, .powerpcle, .powerpc64, .powerpc64le, => 0x8000, .riscv32, .riscv64, => 0x800, else => 0, }; /// Per-thread storage for the ELF TLS ABI. const AbiTcb = switch (current_variant) { .I_original, .I_modified => switch (native_arch) { // ARM EABI mandates enough space for two pointers: the first one points to the DTV as // usual, while the second one is unspecified. .aarch64, .aarch64_be, .arm, .armeb, .thumb, .thumbeb, => extern struct { /// This is offset by `current_dtv_offset`. dtv: usize, reserved: ?*anyopaque, }, else => extern struct { /// This is offset by `current_dtv_offset`. dtv: usize, }, }, .II => extern struct { /// This is self-referential. self: *AbiTcb, }, }; /// Per-thread storage for Zig's use. Currently unused. const ZigTcb = struct { dummy: usize, }; /// Dynamic Thread Vector as specified in the ELF TLS ABI. Ordinarily, there is a block pointer per /// dynamically-loaded module, but since we only support static TLS, we only need one block pointer. const Dtv = extern struct { len: usize = 1, tls_block: [*]u8, }; /// Describes a process's TLS area. The area encompasses the DTV, both TCBs, and the TLS block, with /// the exact layout of these being dependent primarily on `current_variant`. const AreaDesc = struct { size: usize, alignment: usize, dtv: struct { /// Offset into the TLS area. offset: usize, }, abi_tcb: struct { /// Offset into the TLS area. offset: usize, }, block: struct { /// The initial data to be copied into the TLS block. Note that this may be smaller than /// `size`, in which case any remaining data in the TLS block is simply left uninitialized. init: []const u8, /// Offset into the TLS area. offset: usize, /// This is the effective size of the TLS block, which may be greater than `init.len`. size: usize, }, /// Only used on the 32-bit x86 architecture (not x86_64, nor x32). gdt_entry_number: usize, }; pub var area_desc: AreaDesc = undefined; pub fn setThreadPointer(addr: usize) void { @setRuntimeSafety(false); @disableInstrumentation(); switch (native_arch) { .x86 => { var user_desc: linux.user_desc = .{ .entry_number = area_desc.gdt_entry_number, .base_addr = addr, .limit = 0xfffff, .flags = .{ .seg_32bit = 1, .contents = 0, // Data .read_exec_only = 0, .limit_in_pages = 1, .seg_not_present = 0, .useable = 1, }, }; const rc = @call(.always_inline, linux.syscall1, .{ .set_thread_area, @intFromPtr(&user_desc) }); assert(rc == 0); const gdt_entry_number = user_desc.entry_number; // We have to keep track of our slot as it's also needed for clone() area_desc.gdt_entry_number = gdt_entry_number; // Update the %gs selector asm volatile ("movl %[gs_val], %%gs" : : [gs_val] "r" (gdt_entry_number << 3 | 3), ); }, .x86_64 => { const rc = @call(.always_inline, linux.syscall2, .{ .arch_prctl, linux.ARCH.SET_FS, addr }); assert(rc == 0); }, .aarch64, .aarch64_be => { asm volatile ( \\ msr tpidr_el0, %[addr] : : [addr] "r" (addr), ); }, .arc => { // We apparently need to both set r25 (TP) *and* inform the kernel... asm volatile ( \\ mov r25, %[addr] : : [addr] "r" (addr), ); const rc = @call(.always_inline, linux.syscall1, .{ .arc_settls, addr }); assert(rc == 0); }, .arm, .armeb, .thumb, .thumbeb => { const rc = @call(.always_inline, linux.syscall1, .{ .set_tls, addr }); assert(rc == 0); }, .m68k => { const rc = linux.syscall1(.set_thread_area, addr); assert(rc == 0); }, .hexagon => { asm volatile ( \\ ugp = %[addr] : : [addr] "r" (addr), ); }, .loongarch32, .loongarch64 => { asm volatile ( \\ move $tp, %[addr] : : [addr] "r" (addr), ); }, .riscv32, .riscv64 => { asm volatile ( \\ mv tp, %[addr] : : [addr] "r" (addr), ); }, .csky, .mips, .mipsel, .mips64, .mips64el => { const rc = @call(.always_inline, linux.syscall1, .{ .set_thread_area, addr }); assert(rc == 0); }, .powerpc, .powerpcle => { asm volatile ( \\ mr 2, %[addr] : : [addr] "r" (addr), ); }, .powerpc64, .powerpc64le => { asm volatile ( \\ mr 13, %[addr] : : [addr] "r" (addr), ); }, .s390x => { asm volatile ( \\ lgr %%r0, %[addr] \\ sar %%a1, %%r0 \\ srlg %%r0, %%r0, 32 \\ sar %%a0, %%r0 : : [addr] "r" (addr), : "r0" ); }, .sparc, .sparc64 => { asm volatile ( \\ mov %[addr], %%g7 : : [addr] "r" (addr), ); }, else => @compileError("Unsupported architecture"), } } fn computeAreaDesc(phdrs: []elf.Phdr) void { @setRuntimeSafety(false); @disableInstrumentation(); var tls_phdr: ?*elf.Phdr = null; var img_base: usize = 0; for (phdrs) |*phdr| { switch (phdr.p_type) { elf.PT_PHDR => img_base = @intFromPtr(phdrs.ptr) - phdr.p_vaddr, elf.PT_TLS => tls_phdr = phdr, else => {}, } } var align_factor: usize = undefined; var block_init: []const u8 = undefined; var block_size: usize = undefined; if (tls_phdr) |phdr| { align_factor = phdr.p_align; // The effective size in memory is represented by `p_memsz`; the length of the data stored // in the `PT_TLS` segment is `p_filesz` and may be less than the former. block_init = @as([*]u8, @ptrFromInt(img_base + phdr.p_vaddr))[0..phdr.p_filesz]; block_size = phdr.p_memsz; } else { align_factor = @alignOf(usize); block_init = &[_]u8{}; block_size = 0; } // Offsets into the allocated TLS area. var dtv_offset: usize = undefined; var abi_tcb_offset: usize = undefined; var block_offset: usize = undefined; // Compute the total size of the ABI-specific data plus our own `ZigTcb` structure. All the // offsets calculated here assume a well-aligned base address. const area_size = switch (current_variant) { .I_original => blk: { var l: usize = 0; dtv_offset = l; l += @sizeOf(Dtv); // Add some padding here so that the TP (`abi_tcb_offset`) is aligned to `align_factor` // and the `ZigTcb` structure can be found by simply subtracting `@sizeOf(ZigTcb)` from // the TP. const delta = (l + @sizeOf(ZigTcb)) & (align_factor - 1); if (delta > 0) l += align_factor - delta; l += @sizeOf(ZigTcb); abi_tcb_offset = l; l += alignForward(@sizeOf(AbiTcb), align_factor); block_offset = l; l += block_size; break :blk l; }, .I_modified => blk: { var l: usize = 0; dtv_offset = l; l += @sizeOf(Dtv); // In this variant, the TLS blocks must begin immediately after the end of the ABI TCB, // with the TP pointing to the beginning of the TLS blocks. Add padding so that the TP // (`abi_tcb_offset`) is aligned to `align_factor` and the `ZigTcb` structure can be // found by subtracting `@sizeOf(AbiTcb) + @sizeOf(ZigTcb)` from the TP. const delta = (l + @sizeOf(ZigTcb) + @sizeOf(AbiTcb)) & (align_factor - 1); if (delta > 0) l += align_factor - delta; l += @sizeOf(ZigTcb); abi_tcb_offset = l; l += @sizeOf(AbiTcb); block_offset = l; l += block_size; break :blk l; }, .II => blk: { var l: usize = 0; block_offset = l; l += alignForward(block_size, align_factor); // The TP is aligned to `align_factor`. abi_tcb_offset = l; l += @sizeOf(AbiTcb); // The `ZigTcb` structure is right after the `AbiTcb` with no padding in between so it // can be easily found. l += @sizeOf(ZigTcb); // It doesn't really matter where we put the DTV, so give it natural alignment. l = alignForward(l, @alignOf(Dtv)); dtv_offset = l; l += @sizeOf(Dtv); break :blk l; }, }; area_desc = .{ .size = area_size, .alignment = align_factor, .dtv = .{ .offset = dtv_offset, }, .abi_tcb = .{ .offset = abi_tcb_offset, }, .block = .{ .init = block_init, .offset = block_offset, .size = block_size, }, .gdt_entry_number = @as(usize, @bitCast(@as(isize, -1))), }; } /// Inline because TLS is not set up yet. inline fn alignForward(addr: usize, alignment: usize) usize { return alignBackward(addr + (alignment - 1), alignment); } /// Inline because TLS is not set up yet. inline fn alignBackward(addr: usize, alignment: usize) usize { return addr & ~(alignment - 1); } /// Inline because TLS is not set up yet. inline fn alignPtrCast(comptime T: type, ptr: [*]u8) *T { return @ptrCast(@alignCast(ptr)); } /// Initializes all the fields of the static TLS area and returns the computed architecture-specific /// value of the TP register. pub fn prepareArea(area: []u8) usize { @setRuntimeSafety(false); @disableInstrumentation(); // Clear the area we're going to use, just to be safe. @memset(area, 0); // Prepare the ABI TCB. const abi_tcb = alignPtrCast(AbiTcb, area.ptr + area_desc.abi_tcb.offset); switch (current_variant) { .I_original, .I_modified => abi_tcb.dtv = @intFromPtr(area.ptr + area_desc.dtv.offset), .II => abi_tcb.self = abi_tcb, } // Prepare the DTV. const dtv = alignPtrCast(Dtv, area.ptr + area_desc.dtv.offset); dtv.len = 1; dtv.tls_block = area.ptr + current_dtv_offset + area_desc.block.offset; // Copy the initial data. @memcpy(area[area_desc.block.offset..][0..area_desc.block.init.len], area_desc.block.init); // Return the corrected value (if needed) for the TP register. Overflow here is not a problem; // the pointer arithmetic involving the TP is done with wrapping semantics. return @intFromPtr(area.ptr) +% switch (current_variant) { .I_original, .II => area_desc.abi_tcb.offset, .I_modified => area_desc.block.offset +% current_tp_offset, }; } /// The main motivation for the size chosen here is that this is how much ends up being requested for /// the thread-local variables of the `std.crypto.random` implementation. I'm not sure why it ends up /// being so much; the struct itself is only 64 bytes. I think it has to do with being page-aligned /// and LLVM or LLD is not smart enough to lay out the TLS data in a space-conserving way. Anyway, I /// think it's fine because it's less than 3 pages of memory, and putting it in the ELF like this is /// equivalent to moving the `mmap` call below into the kernel, avoiding syscall overhead. var main_thread_area_buffer: [0x2100]u8 align(page_size_min) = undefined; /// Computes the layout of the static TLS area, allocates the area, initializes all of its fields, /// and assigns the architecture-specific value to the TP register. pub fn initStatic(phdrs: []elf.Phdr) void { @setRuntimeSafety(false); @disableInstrumentation(); computeAreaDesc(phdrs); const area = blk: { // Fast path for the common case where the TLS data is really small, avoid an allocation and // use our local buffer. if (area_desc.alignment <= page_size_min and area_desc.size <= main_thread_area_buffer.len) { break :blk main_thread_area_buffer[0..area_desc.size]; } const begin_addr = mmap( null, area_desc.size + area_desc.alignment - 1, posix.PROT.READ | posix.PROT.WRITE, .{ .TYPE = .PRIVATE, .ANONYMOUS = true }, -1, 0, ); if (@as(isize, @bitCast(begin_addr)) < 0) @trap(); const area_ptr: [*]align(page_size_min) u8 = @ptrFromInt(begin_addr); // Make sure the slice is correctly aligned. const begin_aligned_addr = alignForward(begin_addr, area_desc.alignment); const start = begin_aligned_addr - begin_addr; break :blk area_ptr[start..][0..area_desc.size]; }; const tp_value = prepareArea(area); setThreadPointer(tp_value); } inline fn mmap(address: ?[*]u8, length: usize, prot: usize, flags: linux.MAP, fd: i32, offset: i64) usize { if (@hasField(linux.SYS, "mmap2")) { return @call(.always_inline, linux.syscall6, .{ .mmap2, @intFromPtr(address), length, prot, @as(u32, @bitCast(flags)), @as(usize, @bitCast(@as(isize, fd))), @as(usize, @truncate(@as(u64, @bitCast(offset)) / linux.MMAP2_UNIT)), }); } else { // The s390x mmap() syscall existed before Linux supported syscalls with 5+ parameters, so // it takes a single pointer to an array of arguments instead. return if (native_arch == .s390x) @call(.always_inline, linux.syscall1, .{ .mmap, @intFromPtr(&[_]usize{ @intFromPtr(address), length, prot, @as(u32, @bitCast(flags)), @as(usize, @bitCast(@as(isize, fd))), @as(u64, @bitCast(offset)), }), }) else @call(.always_inline, linux.syscall6, .{ .mmap, @intFromPtr(address), length, prot, @as(u32, @bitCast(flags)), @as(usize, @bitCast(@as(isize, fd))), @as(u64, @bitCast(offset)), }); } }