Function binarySearch [src]
Returns the index of an element in items returning .eq when given to compareFn.
If there are multiple such elements, returns the index of any one of them.
If there are no such elements, returns null.
items must be sorted in ascending order with respect to compareFn:
[0] [len]
┌───┬───┬─/ /─┬───┬───┬───┬─/ /─┬───┬───┬───┬─/ /─┬───┐
│.lt│.lt│ \ \ │.lt│.eq│.eq│ \ \ │.eq│.gt│.gt│ \ \ │.gt│
└───┴───┴─/ /─┴───┴───┴───┴─/ /─┴───┴───┴───┴─/ /─┴───┘
├─────────────────┼─────────────────┼─────────────────┤
↳ zero or more ↳ zero or more ↳ zero or more
├─────────────────┤
↳ if not null, returned
index is in this range
O(log n) time complexity.
See also: lowerBound, upperBound, partitionPoint, equalRange.
Prototype
pub fn binarySearch( comptime T: type, items: []const T, context: anytype, comptime compareFn: fn (@TypeOf(context), T) std.math.Order, ) ?usize
Parameters
T: type
items: []const T
compareFn: fn (@TypeOf(context), T) std.math.Order
Example
test binarySearch {
const S = struct {
fn orderU32(context: u32, item: u32) std.math.Order {
return std.math.order(context, item);
}
fn orderI32(context: i32, item: i32) std.math.Order {
return std.math.order(context, item);
}
fn orderLength(context: usize, item: []const u8) std.math.Order {
return std.math.order(context, item.len);
}
};
const R = struct {
b: i32,
e: i32,
fn r(b: i32, e: i32) @This() {
return .{ .b = b, .e = e };
}
fn order(context: i32, item: @This()) std.math.Order {
if (context < item.b) {
return .lt;
} else if (context > item.e) {
return .gt;
} else {
return .eq;
}
}
};
try std.testing.expectEqual(null, binarySearch(u32, &[_]u32{}, @as(u32, 1), S.orderU32));
try std.testing.expectEqual(0, binarySearch(u32, &[_]u32{1}, @as(u32, 1), S.orderU32));
try std.testing.expectEqual(null, binarySearch(u32, &[_]u32{0}, @as(u32, 1), S.orderU32));
try std.testing.expectEqual(null, binarySearch(u32, &[_]u32{1}, @as(u32, 0), S.orderU32));
try std.testing.expectEqual(4, binarySearch(u32, &[_]u32{ 1, 2, 3, 4, 5 }, @as(u32, 5), S.orderU32));
try std.testing.expectEqual(0, binarySearch(u32, &[_]u32{ 2, 4, 8, 16, 32, 64 }, @as(u32, 2), S.orderU32));
try std.testing.expectEqual(1, binarySearch(i32, &[_]i32{ -7, -4, 0, 9, 10 }, @as(i32, -4), S.orderI32));
try std.testing.expectEqual(3, binarySearch(i32, &[_]i32{ -100, -25, 2, 98, 99, 100 }, @as(i32, 98), S.orderI32));
try std.testing.expectEqual(null, binarySearch(R, &[_]R{ R.r(-100, -50), R.r(-40, -20), R.r(-10, 20), R.r(30, 40) }, @as(i32, -45), R.order));
try std.testing.expectEqual(2, binarySearch(R, &[_]R{ R.r(-100, -50), R.r(-40, -20), R.r(-10, 20), R.r(30, 40) }, @as(i32, 10), R.order));
try std.testing.expectEqual(1, binarySearch(R, &[_]R{ R.r(-100, -50), R.r(-40, -20), R.r(-10, 20), R.r(30, 40) }, @as(i32, -20), R.order));
try std.testing.expectEqual(2, binarySearch([]const u8, &[_][]const u8{ "", "abc", "1234", "vwxyz" }, @as(usize, 4), S.orderLength));
}
Source
pub fn binarySearch(
comptime T: type,
items: []const T,
context: anytype,
comptime compareFn: fn (@TypeOf(context), T) std.math.Order,
) ?usize {
var low: usize = 0;
var high: usize = items.len;
while (low < high) {
// Avoid overflowing in the midpoint calculation
const mid = low + (high - low) / 2;
switch (compareFn(context, items[mid])) {
.eq => return mid,
.gt => low = mid + 1,
.lt => high = mid,
}
}
return null;
}