struct unicode [src]

Alias for std.unicode

Members

Source

const std = @import("./std.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const testing = std.testing; const mem = std.mem; const native_endian = builtin.cpu.arch.endian(); /// Use this to replace an unknown, unrecognized, or unrepresentable character. /// /// See also: https://en.wikipedia.org/wiki/Specials_(Unicode_block)#Replacement_character pub const replacement_character: u21 = 0xFFFD; /// Returns how many bytes the UTF-8 representation would require /// for the given codepoint. pub fn utf8CodepointSequenceLength(c: u21) !u3 { if (c < 0x80) return @as(u3, 1); if (c < 0x800) return @as(u3, 2); if (c < 0x10000) return @as(u3, 3); if (c < 0x110000) return @as(u3, 4); return error.CodepointTooLarge; } /// Given the first byte of a UTF-8 codepoint, /// returns a number 1-4 indicating the total length of the codepoint in bytes. /// If this byte does not match the form of a UTF-8 start byte, returns Utf8InvalidStartByte. pub fn utf8ByteSequenceLength(first_byte: u8) !u3 { // The switch is optimized much better than a "smart" approach using @clz return switch (first_byte) { 0b0000_0000...0b0111_1111 => 1, 0b1100_0000...0b1101_1111 => 2, 0b1110_0000...0b1110_1111 => 3, 0b1111_0000...0b1111_0111 => 4, else => error.Utf8InvalidStartByte, }; } /// Encodes the given codepoint into a UTF-8 byte sequence. /// c: the codepoint. /// out: the out buffer to write to. Must have a len >= utf8CodepointSequenceLength(c). /// Errors: if c cannot be encoded in UTF-8. /// Returns: the number of bytes written to out. pub fn utf8Encode(c: u21, out: []u8) error{ Utf8CannotEncodeSurrogateHalf, CodepointTooLarge }!u3 { return utf8EncodeImpl(c, out, .cannot_encode_surrogate_half); } const Surrogates = enum { cannot_encode_surrogate_half, can_encode_surrogate_half, }; fn utf8EncodeImpl(c: u21, out: []u8, comptime surrogates: Surrogates) !u3 { const length = try utf8CodepointSequenceLength(c); assert(out.len >= length); switch (length) { // The pattern for each is the same // - Increasing the initial shift by 6 each time // - Each time after the first shorten the shifted // value to a max of 0b111111 (63) 1 => out[0] = @as(u8, @intCast(c)), // Can just do 0 + codepoint for initial range 2 => { out[0] = @as(u8, @intCast(0b11000000 | (c >> 6))); out[1] = @as(u8, @intCast(0b10000000 | (c & 0b111111))); }, 3 => { if (surrogates == .cannot_encode_surrogate_half and isSurrogateCodepoint(c)) { return error.Utf8CannotEncodeSurrogateHalf; } out[0] = @as(u8, @intCast(0b11100000 | (c >> 12))); out[1] = @as(u8, @intCast(0b10000000 | ((c >> 6) & 0b111111))); out[2] = @as(u8, @intCast(0b10000000 | (c & 0b111111))); }, 4 => { out[0] = @as(u8, @intCast(0b11110000 | (c >> 18))); out[1] = @as(u8, @intCast(0b10000000 | ((c >> 12) & 0b111111))); out[2] = @as(u8, @intCast(0b10000000 | ((c >> 6) & 0b111111))); out[3] = @as(u8, @intCast(0b10000000 | (c & 0b111111))); }, else => unreachable, } return length; } pub inline fn utf8EncodeComptime(comptime c: u21) [ utf8CodepointSequenceLength(c) catch |err| @compileError(@errorName(err)) ]u8 { comptime var result: [ utf8CodepointSequenceLength(c) catch unreachable ]u8 = undefined; comptime assert((utf8Encode(c, &result) catch |err| @compileError(@errorName(err))) == result.len); return result; } const Utf8DecodeError = Utf8Decode2Error || Utf8Decode3Error || Utf8Decode4Error; /// Deprecated. This function has an awkward API that is too easy to use incorrectly. pub fn utf8Decode(bytes: []const u8) Utf8DecodeError!u21 { return switch (bytes.len) { 1 => bytes[0], 2 => utf8Decode2(bytes[0..2].*), 3 => utf8Decode3(bytes[0..3].*), 4 => utf8Decode4(bytes[0..4].*), else => unreachable, }; } const Utf8Decode2Error = error{ Utf8ExpectedContinuation, Utf8OverlongEncoding, }; pub fn utf8Decode2(bytes: [2]u8) Utf8Decode2Error!u21 { assert(bytes[0] & 0b11100000 == 0b11000000); var value: u21 = bytes[0] & 0b00011111; if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation; value <<= 6; value |= bytes[1] & 0b00111111; if (value < 0x80) return error.Utf8OverlongEncoding; return value; } const Utf8Decode3Error = Utf8Decode3AllowSurrogateHalfError || error{ Utf8EncodesSurrogateHalf, }; pub fn utf8Decode3(bytes: [3]u8) Utf8Decode3Error!u21 { const value = try utf8Decode3AllowSurrogateHalf(bytes); if (0xd800 <= value and value <= 0xdfff) return error.Utf8EncodesSurrogateHalf; return value; } const Utf8Decode3AllowSurrogateHalfError = error{ Utf8ExpectedContinuation, Utf8OverlongEncoding, }; pub fn utf8Decode3AllowSurrogateHalf(bytes: [3]u8) Utf8Decode3AllowSurrogateHalfError!u21 { assert(bytes[0] & 0b11110000 == 0b11100000); var value: u21 = bytes[0] & 0b00001111; if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation; value <<= 6; value |= bytes[1] & 0b00111111; if (bytes[2] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation; value <<= 6; value |= bytes[2] & 0b00111111; if (value < 0x800) return error.Utf8OverlongEncoding; return value; } const Utf8Decode4Error = error{ Utf8ExpectedContinuation, Utf8OverlongEncoding, Utf8CodepointTooLarge, }; pub fn utf8Decode4(bytes: [4]u8) Utf8Decode4Error!u21 { assert(bytes[0] & 0b11111000 == 0b11110000); var value: u21 = bytes[0] & 0b00000111; if (bytes[1] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation; value <<= 6; value |= bytes[1] & 0b00111111; if (bytes[2] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation; value <<= 6; value |= bytes[2] & 0b00111111; if (bytes[3] & 0b11000000 != 0b10000000) return error.Utf8ExpectedContinuation; value <<= 6; value |= bytes[3] & 0b00111111; if (value < 0x10000) return error.Utf8OverlongEncoding; if (value > 0x10FFFF) return error.Utf8CodepointTooLarge; return value; } /// Returns true if the given unicode codepoint can be encoded in UTF-8. pub fn utf8ValidCodepoint(value: u21) bool { return switch (value) { 0xD800...0xDFFF => false, // Surrogates range 0x110000...0x1FFFFF => false, // Above the maximum codepoint value else => true, }; } /// Returns the length of a supplied UTF-8 string literal in terms of unicode /// codepoints. pub fn utf8CountCodepoints(s: []const u8) !usize { var len: usize = 0; const N = @sizeOf(usize); const MASK = 0x80 * (std.math.maxInt(usize) / 0xff); var i: usize = 0; while (i < s.len) { // Fast path for ASCII sequences while (i + N <= s.len) : (i += N) { const v = mem.readInt(usize, s[i..][0..N], native_endian); if (v & MASK != 0) break; len += N; } if (i < s.len) { const n = try utf8ByteSequenceLength(s[i]); if (i + n > s.len) return error.TruncatedInput; switch (n) { 1 => {}, // ASCII, no validation needed else => _ = try utf8Decode(s[i..][0..n]), } i += n; len += 1; } } return len; } /// Returns true if the input consists entirely of UTF-8 codepoints pub fn utf8ValidateSlice(input: []const u8) bool { return utf8ValidateSliceImpl(input, .cannot_encode_surrogate_half); } fn utf8ValidateSliceImpl(input: []const u8, comptime surrogates: Surrogates) bool { var remaining = input; if (std.simd.suggestVectorLength(u8)) |chunk_len| { const Chunk = @Vector(chunk_len, u8); // Fast path. Check for and skip ASCII characters at the start of the input. while (remaining.len >= chunk_len) { const chunk: Chunk = remaining[0..chunk_len].*; const mask: Chunk = @splat(0x80); if (@reduce(.Or, chunk & mask == mask)) { // found a non ASCII byte break; } remaining = remaining[chunk_len..]; } } // default lowest and highest continuation byte const lo_cb = 0b10000000; const hi_cb = 0b10111111; const min_non_ascii_codepoint = 0x80; // The first nibble is used to identify the continuation byte range to // accept. The second nibble is the size. const xx = 0xF1; // invalid: size 1 const as = 0xF0; // ASCII: size 1 const s1 = 0x02; // accept 0, size 2 const s2 = switch (surrogates) { .cannot_encode_surrogate_half => 0x13, // accept 1, size 3 .can_encode_surrogate_half => 0x03, // accept 0, size 3 }; const s3 = 0x03; // accept 0, size 3 const s4 = switch (surrogates) { .cannot_encode_surrogate_half => 0x23, // accept 2, size 3 .can_encode_surrogate_half => 0x03, // accept 0, size 3 }; const s5 = 0x34; // accept 3, size 4 const s6 = 0x04; // accept 0, size 4 const s7 = 0x44; // accept 4, size 4 // Information about the first byte in a UTF-8 sequence. const first = comptime ([_]u8{as} ** 128) ++ ([_]u8{xx} ** 64) ++ [_]u8{ xx, xx, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s2, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s4, s3, s3, s5, s6, s6, s6, s7, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, }; const n = remaining.len; var i: usize = 0; while (i < n) { const first_byte = remaining[i]; if (first_byte < min_non_ascii_codepoint) { i += 1; continue; } const info = first[first_byte]; if (info == xx) { return false; // Illegal starter byte. } const size = info & 7; if (i + size > n) { return false; // Short or invalid. } // Figure out the acceptable low and high continuation bytes, starting // with our defaults. var accept_lo: u8 = lo_cb; var accept_hi: u8 = hi_cb; switch (info >> 4) { 0 => {}, 1 => accept_lo = 0xA0, 2 => accept_hi = 0x9F, 3 => accept_lo = 0x90, 4 => accept_hi = 0x8F, else => unreachable, } const c1 = remaining[i + 1]; if (c1 < accept_lo or accept_hi < c1) { return false; } switch (size) { 2 => i += 2, 3 => { const c2 = remaining[i + 2]; if (c2 < lo_cb or hi_cb < c2) { return false; } i += 3; }, 4 => { const c2 = remaining[i + 2]; if (c2 < lo_cb or hi_cb < c2) { return false; } const c3 = remaining[i + 3]; if (c3 < lo_cb or hi_cb < c3) { return false; } i += 4; }, else => unreachable, } } return true; } /// Utf8View iterates the code points of a utf-8 encoded string. /// /// ``` /// var utf8 = (try std.unicode.Utf8View.init("hi there")).iterator(); /// while (utf8.nextCodepointSlice()) |codepoint| { /// std.debug.print("got codepoint {s}\n", .{codepoint}); /// } /// ``` pub const Utf8View = struct { bytes: []const u8, pub fn init(s: []const u8) !Utf8View { if (!utf8ValidateSlice(s)) { return error.InvalidUtf8; } return initUnchecked(s); } pub fn initUnchecked(s: []const u8) Utf8View { return Utf8View{ .bytes = s }; } pub inline fn initComptime(comptime s: []const u8) Utf8View { return comptime if (init(s)) |r| r else |err| switch (err) { error.InvalidUtf8 => { @compileError("invalid utf8"); }, }; } pub fn iterator(s: Utf8View) Utf8Iterator { return Utf8Iterator{ .bytes = s.bytes, .i = 0, }; } }; pub const Utf8Iterator = struct { bytes: []const u8, i: usize, pub fn nextCodepointSlice(it: *Utf8Iterator) ?[]const u8 { if (it.i >= it.bytes.len) { return null; } const cp_len = utf8ByteSequenceLength(it.bytes[it.i]) catch unreachable; it.i += cp_len; return it.bytes[it.i - cp_len .. it.i]; } pub fn nextCodepoint(it: *Utf8Iterator) ?u21 { const slice = it.nextCodepointSlice() orelse return null; return utf8Decode(slice) catch unreachable; } /// Look ahead at the next n codepoints without advancing the iterator. /// If fewer than n codepoints are available, then return the remainder of the string. pub fn peek(it: *Utf8Iterator, n: usize) []const u8 { const original_i = it.i; defer it.i = original_i; var end_ix = original_i; var found: usize = 0; while (found < n) : (found += 1) { const next_codepoint = it.nextCodepointSlice() orelse return it.bytes[original_i..]; end_ix += next_codepoint.len; } return it.bytes[original_i..end_ix]; } }; pub fn utf16IsHighSurrogate(c: u16) bool { return c & ~@as(u16, 0x03ff) == 0xd800; } pub fn utf16IsLowSurrogate(c: u16) bool { return c & ~@as(u16, 0x03ff) == 0xdc00; } /// Returns how many code units the UTF-16 representation would require /// for the given codepoint. pub fn utf16CodepointSequenceLength(c: u21) !u2 { if (c <= 0xFFFF) return 1; if (c <= 0x10FFFF) return 2; return error.CodepointTooLarge; } test utf16CodepointSequenceLength { try testing.expectEqual(@as(u2, 1), try utf16CodepointSequenceLength('a')); try testing.expectEqual(@as(u2, 1), try utf16CodepointSequenceLength(0xFFFF)); try testing.expectEqual(@as(u2, 2), try utf16CodepointSequenceLength(0x10000)); try testing.expectEqual(@as(u2, 2), try utf16CodepointSequenceLength(0x10FFFF)); try testing.expectError(error.CodepointTooLarge, utf16CodepointSequenceLength(0x110000)); } /// Given the first code unit of a UTF-16 codepoint, returns a number 1-2 /// indicating the total length of the codepoint in UTF-16 code units. /// If this code unit does not match the form of a UTF-16 start code unit, returns Utf16InvalidStartCodeUnit. pub fn utf16CodeUnitSequenceLength(first_code_unit: u16) !u2 { if (utf16IsHighSurrogate(first_code_unit)) return 2; if (utf16IsLowSurrogate(first_code_unit)) return error.Utf16InvalidStartCodeUnit; return 1; } test utf16CodeUnitSequenceLength { try testing.expectEqual(@as(u2, 1), try utf16CodeUnitSequenceLength('a')); try testing.expectEqual(@as(u2, 1), try utf16CodeUnitSequenceLength(0xFFFF)); try testing.expectEqual(@as(u2, 2), try utf16CodeUnitSequenceLength(0xDBFF)); try testing.expectError(error.Utf16InvalidStartCodeUnit, utf16CodeUnitSequenceLength(0xDFFF)); } /// Decodes the codepoint encoded in the given pair of UTF-16 code units. /// Asserts that `surrogate_pair.len >= 2` and that the first code unit is a high surrogate. /// If the second code unit is not a low surrogate, error.ExpectedSecondSurrogateHalf is returned. pub fn utf16DecodeSurrogatePair(surrogate_pair: []const u16) !u21 { assert(surrogate_pair.len >= 2); assert(utf16IsHighSurrogate(surrogate_pair[0])); const high_half: u21 = surrogate_pair[0]; const low_half = surrogate_pair[1]; if (!utf16IsLowSurrogate(low_half)) return error.ExpectedSecondSurrogateHalf; return 0x10000 + ((high_half & 0x03ff) << 10) | (low_half & 0x03ff); } pub const Utf16LeIterator = struct { bytes: []const u8, i: usize, pub fn init(s: []const u16) Utf16LeIterator { return Utf16LeIterator{ .bytes = mem.sliceAsBytes(s), .i = 0, }; } pub const NextCodepointError = error{ DanglingSurrogateHalf, ExpectedSecondSurrogateHalf, UnexpectedSecondSurrogateHalf }; pub fn nextCodepoint(it: *Utf16LeIterator) NextCodepointError!?u21 { assert(it.i <= it.bytes.len); if (it.i == it.bytes.len) return null; var code_units: [2]u16 = undefined; code_units[0] = mem.readInt(u16, it.bytes[it.i..][0..2], .little); it.i += 2; if (utf16IsHighSurrogate(code_units[0])) { // surrogate pair if (it.i >= it.bytes.len) return error.DanglingSurrogateHalf; code_units[1] = mem.readInt(u16, it.bytes[it.i..][0..2], .little); const codepoint = try utf16DecodeSurrogatePair(&code_units); it.i += 2; return codepoint; } else if (utf16IsLowSurrogate(code_units[0])) { return error.UnexpectedSecondSurrogateHalf; } else { return code_units[0]; } } }; /// Returns the length of a supplied UTF-16 string literal in terms of unicode /// codepoints. pub fn utf16CountCodepoints(utf16le: []const u16) !usize { var len: usize = 0; var it = Utf16LeIterator.init(utf16le); while (try it.nextCodepoint()) |_| len += 1; return len; } fn testUtf16CountCodepoints() !void { try testing.expectEqual( @as(usize, 1), try utf16CountCodepoints(utf8ToUtf16LeStringLiteral("a")), ); try testing.expectEqual( @as(usize, 10), try utf16CountCodepoints(utf8ToUtf16LeStringLiteral("abcdefghij")), ); try testing.expectEqual( @as(usize, 10), try utf16CountCodepoints(utf8ToUtf16LeStringLiteral("äåéëþüúíóö")), ); try testing.expectEqual( @as(usize, 5), try utf16CountCodepoints(utf8ToUtf16LeStringLiteral("こんにちは")), ); } test "utf16 count codepoints" { @setEvalBranchQuota(2000); try testUtf16CountCodepoints(); try comptime testUtf16CountCodepoints(); } test "utf8 encode" { try comptime testUtf8Encode(); try testUtf8Encode(); } fn testUtf8Encode() !void { // A few taken from wikipedia a few taken elsewhere var array: [4]u8 = undefined; try testing.expect((try utf8Encode(try utf8Decode("€"), array[0..])) == 3); try testing.expect(array[0] == 0b11100010); try testing.expect(array[1] == 0b10000010); try testing.expect(array[2] == 0b10101100); try testing.expect((try utf8Encode(try utf8Decode("$"), array[0..])) == 1); try testing.expect(array[0] == 0b00100100); try testing.expect((try utf8Encode(try utf8Decode("¢"), array[0..])) == 2); try testing.expect(array[0] == 0b11000010); try testing.expect(array[1] == 0b10100010); try testing.expect((try utf8Encode(try utf8Decode("𐍈"), array[0..])) == 4); try testing.expect(array[0] == 0b11110000); try testing.expect(array[1] == 0b10010000); try testing.expect(array[2] == 0b10001101); try testing.expect(array[3] == 0b10001000); } test "utf8 encode comptime" { try testing.expectEqualSlices(u8, "€", &utf8EncodeComptime('€')); try testing.expectEqualSlices(u8, "$", &utf8EncodeComptime('$')); try testing.expectEqualSlices(u8, "¢", &utf8EncodeComptime('¢')); try testing.expectEqualSlices(u8, "𐍈", &utf8EncodeComptime('𐍈')); } test "utf8 encode error" { try comptime testUtf8EncodeError(); try testUtf8EncodeError(); } fn testUtf8EncodeError() !void { var array: [4]u8 = undefined; try testErrorEncode(0xd800, array[0..], error.Utf8CannotEncodeSurrogateHalf); try testErrorEncode(0xdfff, array[0..], error.Utf8CannotEncodeSurrogateHalf); try testErrorEncode(0x110000, array[0..], error.CodepointTooLarge); try testErrorEncode(0x1fffff, array[0..], error.CodepointTooLarge); } fn testErrorEncode(codePoint: u21, array: []u8, expectedErr: anyerror) !void { try testing.expectError(expectedErr, utf8Encode(codePoint, array)); } test "utf8 iterator on ascii" { try comptime testUtf8IteratorOnAscii(); try testUtf8IteratorOnAscii(); } fn testUtf8IteratorOnAscii() !void { const s = Utf8View.initComptime("abc"); var it1 = s.iterator(); try testing.expect(mem.eql(u8, "a", it1.nextCodepointSlice().?)); try testing.expect(mem.eql(u8, "b", it1.nextCodepointSlice().?)); try testing.expect(mem.eql(u8, "c", it1.nextCodepointSlice().?)); try testing.expect(it1.nextCodepointSlice() == null); var it2 = s.iterator(); try testing.expect(it2.nextCodepoint().? == 'a'); try testing.expect(it2.nextCodepoint().? == 'b'); try testing.expect(it2.nextCodepoint().? == 'c'); try testing.expect(it2.nextCodepoint() == null); } test "utf8 view bad" { try comptime testUtf8ViewBad(); try testUtf8ViewBad(); } fn testUtf8ViewBad() !void { // Compile-time error. // const s3 = Utf8View.initComptime("\xfe\xf2"); try testing.expectError(error.InvalidUtf8, Utf8View.init("hel\xadlo")); } test "utf8 view ok" { try comptime testUtf8ViewOk(); try testUtf8ViewOk(); } fn testUtf8ViewOk() !void { const s = Utf8View.initComptime("東京市"); var it1 = s.iterator(); try testing.expect(mem.eql(u8, "東", it1.nextCodepointSlice().?)); try testing.expect(mem.eql(u8, "京", it1.nextCodepointSlice().?)); try testing.expect(mem.eql(u8, "市", it1.nextCodepointSlice().?)); try testing.expect(it1.nextCodepointSlice() == null); var it2 = s.iterator(); try testing.expect(it2.nextCodepoint().? == 0x6771); try testing.expect(it2.nextCodepoint().? == 0x4eac); try testing.expect(it2.nextCodepoint().? == 0x5e02); try testing.expect(it2.nextCodepoint() == null); } test "validate slice" { try comptime testValidateSlice(); try testValidateSlice(); // We skip a variable (based on recommended vector size) chunks of // ASCII characters. Let's make sure we're chunking correctly. const str = [_]u8{'a'} ** 550 ++ "\xc0"; for (0..str.len - 3) |i| { try testing.expect(!utf8ValidateSlice(str[i..])); } } fn testValidateSlice() !void { try testing.expect(utf8ValidateSlice("abc")); try testing.expect(utf8ValidateSlice("abc\xdf\xbf")); try testing.expect(utf8ValidateSlice("")); try testing.expect(utf8ValidateSlice("a")); try testing.expect(utf8ValidateSlice("abc")); try testing.expect(utf8ValidateSlice("Ж")); try testing.expect(utf8ValidateSlice("ЖЖ")); try testing.expect(utf8ValidateSlice("брэд-ЛГТМ")); try testing.expect(utf8ValidateSlice("☺☻☹")); try testing.expect(utf8ValidateSlice("a\u{fffdb}")); try testing.expect(utf8ValidateSlice("\xf4\x8f\xbf\xbf")); try testing.expect(utf8ValidateSlice("abc\xdf\xbf")); try testing.expect(!utf8ValidateSlice("abc\xc0")); try testing.expect(!utf8ValidateSlice("abc\xc0abc")); try testing.expect(!utf8ValidateSlice("aa\xe2")); try testing.expect(!utf8ValidateSlice("\x42\xfa")); try testing.expect(!utf8ValidateSlice("\x42\xfa\x43")); try testing.expect(!utf8ValidateSlice("abc\xc0")); try testing.expect(!utf8ValidateSlice("abc\xc0abc")); try testing.expect(!utf8ValidateSlice("\xf4\x90\x80\x80")); try testing.expect(!utf8ValidateSlice("\xf7\xbf\xbf\xbf")); try testing.expect(!utf8ValidateSlice("\xfb\xbf\xbf\xbf\xbf")); try testing.expect(!utf8ValidateSlice("\xc0\x80")); try testing.expect(!utf8ValidateSlice("\xed\xa0\x80")); try testing.expect(!utf8ValidateSlice("\xed\xbf\xbf")); } test "valid utf8" { try comptime testValidUtf8(); try testValidUtf8(); } fn testValidUtf8() !void { try testValid("\x00", 0x0); try testValid("\x20", 0x20); try testValid("\x7f", 0x7f); try testValid("\xc2\x80", 0x80); try testValid("\xdf\xbf", 0x7ff); try testValid("\xe0\xa0\x80", 0x800); try testValid("\xe1\x80\x80", 0x1000); try testValid("\xef\xbf\xbf", 0xffff); try testValid("\xf0\x90\x80\x80", 0x10000); try testValid("\xf1\x80\x80\x80", 0x40000); try testValid("\xf3\xbf\xbf\xbf", 0xfffff); try testValid("\xf4\x8f\xbf\xbf", 0x10ffff); } test "invalid utf8 continuation bytes" { try comptime testInvalidUtf8ContinuationBytes(); try testInvalidUtf8ContinuationBytes(); } fn testInvalidUtf8ContinuationBytes() !void { // unexpected continuation try testError("\x80", error.Utf8InvalidStartByte); try testError("\xbf", error.Utf8InvalidStartByte); // too many leading 1's try testError("\xf8", error.Utf8InvalidStartByte); try testError("\xff", error.Utf8InvalidStartByte); // expected continuation for 2 byte sequences try testError("\xc2", error.UnexpectedEof); try testError("\xc2\x00", error.Utf8ExpectedContinuation); try testError("\xc2\xc0", error.Utf8ExpectedContinuation); // expected continuation for 3 byte sequences try testError("\xe0", error.UnexpectedEof); try testError("\xe0\x00", error.UnexpectedEof); try testError("\xe0\xc0", error.UnexpectedEof); try testError("\xe0\xa0", error.UnexpectedEof); try testError("\xe0\xa0\x00", error.Utf8ExpectedContinuation); try testError("\xe0\xa0\xc0", error.Utf8ExpectedContinuation); // expected continuation for 4 byte sequences try testError("\xf0", error.UnexpectedEof); try testError("\xf0\x00", error.UnexpectedEof); try testError("\xf0\xc0", error.UnexpectedEof); try testError("\xf0\x90\x00", error.UnexpectedEof); try testError("\xf0\x90\xc0", error.UnexpectedEof); try testError("\xf0\x90\x80\x00", error.Utf8ExpectedContinuation); try testError("\xf0\x90\x80\xc0", error.Utf8ExpectedContinuation); } test "overlong utf8 codepoint" { try comptime testOverlongUtf8Codepoint(); try testOverlongUtf8Codepoint(); } fn testOverlongUtf8Codepoint() !void { try testError("\xc0\x80", error.Utf8OverlongEncoding); try testError("\xc1\xbf", error.Utf8OverlongEncoding); try testError("\xe0\x80\x80", error.Utf8OverlongEncoding); try testError("\xe0\x9f\xbf", error.Utf8OverlongEncoding); try testError("\xf0\x80\x80\x80", error.Utf8OverlongEncoding); try testError("\xf0\x8f\xbf\xbf", error.Utf8OverlongEncoding); } test "misc invalid utf8" { try comptime testMiscInvalidUtf8(); try testMiscInvalidUtf8(); } fn testMiscInvalidUtf8() !void { // codepoint out of bounds try testError("\xf4\x90\x80\x80", error.Utf8CodepointTooLarge); try testError("\xf7\xbf\xbf\xbf", error.Utf8CodepointTooLarge); // surrogate halves try testValid("\xed\x9f\xbf", 0xd7ff); try testError("\xed\xa0\x80", error.Utf8EncodesSurrogateHalf); try testError("\xed\xbf\xbf", error.Utf8EncodesSurrogateHalf); try testValid("\xee\x80\x80", 0xe000); } test "utf8 iterator peeking" { try comptime testUtf8Peeking(); try testUtf8Peeking(); } fn testUtf8Peeking() !void { const s = Utf8View.initComptime("noël"); var it = s.iterator(); try testing.expect(mem.eql(u8, "n", it.nextCodepointSlice().?)); try testing.expect(mem.eql(u8, "o", it.peek(1))); try testing.expect(mem.eql(u8, "oë", it.peek(2))); try testing.expect(mem.eql(u8, "oël", it.peek(3))); try testing.expect(mem.eql(u8, "oël", it.peek(4))); try testing.expect(mem.eql(u8, "oël", it.peek(10))); try testing.expect(mem.eql(u8, "o", it.nextCodepointSlice().?)); try testing.expect(mem.eql(u8, "ë", it.nextCodepointSlice().?)); try testing.expect(mem.eql(u8, "l", it.nextCodepointSlice().?)); try testing.expect(it.nextCodepointSlice() == null); try testing.expect(mem.eql(u8, &[_]u8{}, it.peek(1))); } fn testError(bytes: []const u8, expected_err: anyerror) !void { try testing.expectError(expected_err, testDecode(bytes)); } fn testValid(bytes: []const u8, expected_codepoint: u21) !void { try testing.expect((testDecode(bytes) catch unreachable) == expected_codepoint); } fn testDecode(bytes: []const u8) !u21 { const length = try utf8ByteSequenceLength(bytes[0]); if (bytes.len < length) return error.UnexpectedEof; try testing.expect(bytes.len == length); return utf8Decode(bytes); } /// Print the given `utf8` string, encoded as UTF-8 bytes. /// Ill-formed UTF-8 byte sequences are replaced by the replacement character (U+FFFD) /// according to "U+FFFD Substitution of Maximal Subparts" from Chapter 3 of /// the Unicode standard, and as specified by https://encoding.spec.whatwg.org/#utf-8-decoder fn formatUtf8( utf8: []const u8, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = fmt; _ = options; var buf: [300]u8 = undefined; // just an arbitrary size var u8len: usize = 0; // This implementation is based on this specification: // https://encoding.spec.whatwg.org/#utf-8-decoder var codepoint: u21 = 0; var cont_bytes_seen: u3 = 0; var cont_bytes_needed: u3 = 0; var lower_boundary: u8 = 0x80; var upper_boundary: u8 = 0xBF; var i: usize = 0; while (i < utf8.len) { const byte = utf8[i]; if (cont_bytes_needed == 0) { switch (byte) { 0x00...0x7F => { buf[u8len] = byte; u8len += 1; }, 0xC2...0xDF => { cont_bytes_needed = 1; codepoint = byte & 0b00011111; }, 0xE0...0xEF => { if (byte == 0xE0) lower_boundary = 0xA0; if (byte == 0xED) upper_boundary = 0x9F; cont_bytes_needed = 2; codepoint = byte & 0b00001111; }, 0xF0...0xF4 => { if (byte == 0xF0) lower_boundary = 0x90; if (byte == 0xF4) upper_boundary = 0x8F; cont_bytes_needed = 3; codepoint = byte & 0b00000111; }, else => { u8len += utf8Encode(replacement_character, buf[u8len..]) catch unreachable; }, } // consume the byte i += 1; } else if (byte < lower_boundary or byte > upper_boundary) { codepoint = 0; cont_bytes_needed = 0; cont_bytes_seen = 0; lower_boundary = 0x80; upper_boundary = 0xBF; u8len += utf8Encode(replacement_character, buf[u8len..]) catch unreachable; // do not consume the current byte, it should now be treated as a possible start byte } else { lower_boundary = 0x80; upper_boundary = 0xBF; codepoint <<= 6; codepoint |= byte & 0b00111111; cont_bytes_seen += 1; // consume the byte i += 1; if (cont_bytes_seen == cont_bytes_needed) { const codepoint_len = cont_bytes_seen + 1; const codepoint_start_i = i - codepoint_len; @memcpy(buf[u8len..][0..codepoint_len], utf8[codepoint_start_i..][0..codepoint_len]); u8len += codepoint_len; codepoint = 0; cont_bytes_needed = 0; cont_bytes_seen = 0; } } // make sure there's always enough room for another maximum length UTF-8 codepoint if (u8len + 4 > buf.len) { try writer.writeAll(buf[0..u8len]); u8len = 0; } } if (cont_bytes_needed != 0) { // we know there's enough room because we always flush // if there's less than 4 bytes remaining in the buffer. u8len += utf8Encode(replacement_character, buf[u8len..]) catch unreachable; } try writer.writeAll(buf[0..u8len]); } /// Return a Formatter for a (potentially ill-formed) UTF-8 string. /// Ill-formed UTF-8 byte sequences are replaced by the replacement character (U+FFFD) /// according to "U+FFFD Substitution of Maximal Subparts" from Chapter 3 of /// the Unicode standard, and as specified by https://encoding.spec.whatwg.org/#utf-8-decoder pub fn fmtUtf8(utf8: []const u8) std.fmt.Formatter(formatUtf8) { return .{ .data = utf8 }; } test fmtUtf8 { const expectFmt = testing.expectFmt; try expectFmt("", "{}", .{fmtUtf8("")}); try expectFmt("foo", "{}", .{fmtUtf8("foo")}); try expectFmt("𐐷", "{}", .{fmtUtf8("𐐷")}); // Table 3-8. U+FFFD for Non-Shortest Form Sequences try expectFmt("��������A", "{}", .{fmtUtf8("\xC0\xAF\xE0\x80\xBF\xF0\x81\x82A")}); // Table 3-9. U+FFFD for Ill-Formed Sequences for Surrogates try expectFmt("��������A", "{}", .{fmtUtf8("\xED\xA0\x80\xED\xBF\xBF\xED\xAFA")}); // Table 3-10. U+FFFD for Other Ill-Formed Sequences try expectFmt("�����A��B", "{}", .{fmtUtf8("\xF4\x91\x92\x93\xFFA\x80\xBFB")}); // Table 3-11. U+FFFD for Truncated Sequences try expectFmt("����A", "{}", .{fmtUtf8("\xE1\x80\xE2\xF0\x91\x92\xF1\xBFA")}); } fn utf16LeToUtf8ArrayListImpl( result: *std.ArrayList(u8), utf16le: []const u16, comptime surrogates: Surrogates, ) (switch (surrogates) { .cannot_encode_surrogate_half => Utf16LeToUtf8AllocError, .can_encode_surrogate_half => mem.Allocator.Error, })!void { assert(result.unusedCapacitySlice().len >= utf16le.len); var remaining = utf16le; vectorized: { const chunk_len = std.simd.suggestVectorLength(u16) orelse break :vectorized; const Chunk = @Vector(chunk_len, u16); // Fast path. Check for and encode ASCII characters at the start of the input. while (remaining.len >= chunk_len) { const chunk: Chunk = remaining[0..chunk_len].*; const mask: Chunk = @splat(mem.nativeToLittle(u16, 0x7F)); if (@reduce(.Or, chunk | mask != mask)) { // found a non ASCII code unit break; } const ascii_chunk: @Vector(chunk_len, u8) = @truncate(mem.nativeToLittle(Chunk, chunk)); // We allocated enough space to encode every UTF-16 code unit // as ASCII, so if the entire string is ASCII then we are // guaranteed to have enough space allocated result.addManyAsArrayAssumeCapacity(chunk_len).* = ascii_chunk; remaining = remaining[chunk_len..]; } } switch (surrogates) { .cannot_encode_surrogate_half => { var it = Utf16LeIterator.init(remaining); while (try it.nextCodepoint()) |codepoint| { const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable; assert((utf8Encode(codepoint, try result.addManyAsSlice(utf8_len)) catch unreachable) == utf8_len); } }, .can_encode_surrogate_half => { var it = Wtf16LeIterator.init(remaining); while (it.nextCodepoint()) |codepoint| { const utf8_len = utf8CodepointSequenceLength(codepoint) catch unreachable; assert((wtf8Encode(codepoint, try result.addManyAsSlice(utf8_len)) catch unreachable) == utf8_len); } }, } } pub const Utf16LeToUtf8AllocError = mem.Allocator.Error || Utf16LeToUtf8Error; pub fn utf16LeToUtf8ArrayList(result: *std.ArrayList(u8), utf16le: []const u16) Utf16LeToUtf8AllocError!void { try result.ensureUnusedCapacity(utf16le.len); return utf16LeToUtf8ArrayListImpl(result, utf16le, .cannot_encode_surrogate_half); } pub const utf16leToUtf8Alloc = @compileError("deprecated; renamed to utf16LeToUtf8Alloc"); /// Caller must free returned memory. pub fn utf16LeToUtf8Alloc(allocator: mem.Allocator, utf16le: []const u16) Utf16LeToUtf8AllocError![]u8 { // optimistically guess that it will all be ascii. var result = try std.ArrayList(u8).initCapacity(allocator, utf16le.len); errdefer result.deinit(); try utf16LeToUtf8ArrayListImpl(&result, utf16le, .cannot_encode_surrogate_half); return result.toOwnedSlice(); } pub const utf16leToUtf8AllocZ = @compileError("deprecated; renamed to utf16LeToUtf8AllocZ"); /// Caller must free returned memory. pub fn utf16LeToUtf8AllocZ(allocator: mem.Allocator, utf16le: []const u16) Utf16LeToUtf8AllocError![:0]u8 { // optimistically guess that it will all be ascii (and allocate space for the null terminator) var result = try std.ArrayList(u8).initCapacity(allocator, utf16le.len + 1); errdefer result.deinit(); try utf16LeToUtf8ArrayListImpl(&result, utf16le, .cannot_encode_surrogate_half); return result.toOwnedSliceSentinel(0); } pub const Utf16LeToUtf8Error = Utf16LeIterator.NextCodepointError; /// Asserts that the output buffer is big enough. /// Returns end byte index into utf8. fn utf16LeToUtf8Impl(utf8: []u8, utf16le: []const u16, comptime surrogates: Surrogates) (switch (surrogates) { .cannot_encode_surrogate_half => Utf16LeToUtf8Error, .can_encode_surrogate_half => error{}, })!usize { var dest_index: usize = 0; var remaining = utf16le; vectorized: { const chunk_len = std.simd.suggestVectorLength(u16) orelse break :vectorized; const Chunk = @Vector(chunk_len, u16); // Fast path. Check for and encode ASCII characters at the start of the input. while (remaining.len >= chunk_len) { const chunk: Chunk = remaining[0..chunk_len].*; const mask: Chunk = @splat(mem.nativeToLittle(u16, 0x7F)); if (@reduce(.Or, chunk | mask != mask)) { // found a non ASCII code unit break; } const ascii_chunk: @Vector(chunk_len, u8) = @truncate(mem.nativeToLittle(Chunk, chunk)); utf8[dest_index..][0..chunk_len].* = ascii_chunk; dest_index += chunk_len; remaining = remaining[chunk_len..]; } } switch (surrogates) { .cannot_encode_surrogate_half => { var it = Utf16LeIterator.init(remaining); while (try it.nextCodepoint()) |codepoint| { dest_index += utf8Encode(codepoint, utf8[dest_index..]) catch |err| switch (err) { // The maximum possible codepoint encoded by UTF-16 is U+10FFFF, // which is within the valid codepoint range. error.CodepointTooLarge => unreachable, // We know the codepoint was valid in UTF-16, meaning it is not // an unpaired surrogate codepoint. error.Utf8CannotEncodeSurrogateHalf => unreachable, }; } }, .can_encode_surrogate_half => { var it = Wtf16LeIterator.init(remaining); while (it.nextCodepoint()) |codepoint| { dest_index += wtf8Encode(codepoint, utf8[dest_index..]) catch |err| switch (err) { // The maximum possible codepoint encoded by UTF-16 is U+10FFFF, // which is within the valid codepoint range. error.CodepointTooLarge => unreachable, }; } }, } return dest_index; } pub const utf16leToUtf8 = @compileError("deprecated; renamed to utf16LeToUtf8"); pub fn utf16LeToUtf8(utf8: []u8, utf16le: []const u16) Utf16LeToUtf8Error!usize { return utf16LeToUtf8Impl(utf8, utf16le, .cannot_encode_surrogate_half); } test utf16LeToUtf8 { var utf16le: [2]u16 = undefined; const utf16le_as_bytes = mem.sliceAsBytes(utf16le[0..]); { mem.writeInt(u16, utf16le_as_bytes[0..2], 'A', .little); mem.writeInt(u16, utf16le_as_bytes[2..4], 'a', .little); const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le); defer testing.allocator.free(utf8); try testing.expect(mem.eql(u8, utf8, "Aa")); } { mem.writeInt(u16, utf16le_as_bytes[0..2], 0x80, .little); mem.writeInt(u16, utf16le_as_bytes[2..4], 0xffff, .little); const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le); defer testing.allocator.free(utf8); try testing.expect(mem.eql(u8, utf8, "\xc2\x80" ++ "\xef\xbf\xbf")); } { // the values just outside the surrogate half range mem.writeInt(u16, utf16le_as_bytes[0..2], 0xd7ff, .little); mem.writeInt(u16, utf16le_as_bytes[2..4], 0xe000, .little); const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le); defer testing.allocator.free(utf8); try testing.expect(mem.eql(u8, utf8, "\xed\x9f\xbf" ++ "\xee\x80\x80")); } { // smallest surrogate pair mem.writeInt(u16, utf16le_as_bytes[0..2], 0xd800, .little); mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdc00, .little); const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le); defer testing.allocator.free(utf8); try testing.expect(mem.eql(u8, utf8, "\xf0\x90\x80\x80")); } { // largest surrogate pair mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdbff, .little); mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdfff, .little); const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le); defer testing.allocator.free(utf8); try testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xbf\xbf")); } { mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdbff, .little); mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdc00, .little); const utf8 = try utf16LeToUtf8Alloc(testing.allocator, &utf16le); defer testing.allocator.free(utf8); try testing.expect(mem.eql(u8, utf8, "\xf4\x8f\xb0\x80")); } { mem.writeInt(u16, utf16le_as_bytes[0..2], 0xdcdc, .little); mem.writeInt(u16, utf16le_as_bytes[2..4], 0xdcdc, .little); const result = utf16LeToUtf8Alloc(testing.allocator, &utf16le); try testing.expectError(error.UnexpectedSecondSurrogateHalf, result); } } fn utf8ToUtf16LeArrayListImpl(result: *std.ArrayList(u16), utf8: []const u8, comptime surrogates: Surrogates) !void { assert(result.unusedCapacitySlice().len >= utf8.len); var remaining = utf8; vectorized: { const chunk_len = std.simd.suggestVectorLength(u16) orelse break :vectorized; const Chunk = @Vector(chunk_len, u8); // Fast path. Check for and encode ASCII characters at the start of the input. while (remaining.len >= chunk_len) { const chunk: Chunk = remaining[0..chunk_len].*; const mask: Chunk = @splat(0x80); if (@reduce(.Or, chunk & mask == mask)) { // found a non ASCII code unit break; } const utf16_chunk = mem.nativeToLittle(@Vector(chunk_len, u16), chunk); result.addManyAsArrayAssumeCapacity(chunk_len).* = utf16_chunk; remaining = remaining[chunk_len..]; } } const view = switch (surrogates) { .cannot_encode_surrogate_half => try Utf8View.init(remaining), .can_encode_surrogate_half => try Wtf8View.init(remaining), }; var it = view.iterator(); while (it.nextCodepoint()) |codepoint| { if (codepoint < 0x10000) { try result.append(mem.nativeToLittle(u16, @intCast(codepoint))); } else { const high = @as(u16, @intCast((codepoint - 0x10000) >> 10)) + 0xD800; const low = @as(u16, @intCast(codepoint & 0x3FF)) + 0xDC00; try result.appendSlice(&.{ mem.nativeToLittle(u16, high), mem.nativeToLittle(u16, low) }); } } } pub fn utf8ToUtf16LeArrayList(result: *std.ArrayList(u16), utf8: []const u8) error{ InvalidUtf8, OutOfMemory }!void { try result.ensureUnusedCapacity(utf8.len); return utf8ToUtf16LeArrayListImpl(result, utf8, .cannot_encode_surrogate_half); } pub fn utf8ToUtf16LeAlloc(allocator: mem.Allocator, utf8: []const u8) error{ InvalidUtf8, OutOfMemory }![]u16 { // optimistically guess that it will not require surrogate pairs var result = try std.ArrayList(u16).initCapacity(allocator, utf8.len); errdefer result.deinit(); try utf8ToUtf16LeArrayListImpl(&result, utf8, .cannot_encode_surrogate_half); return result.toOwnedSlice(); } pub const utf8ToUtf16LeWithNull = @compileError("deprecated; renamed to utf8ToUtf16LeAllocZ"); pub fn utf8ToUtf16LeAllocZ(allocator: mem.Allocator, utf8: []const u8) error{ InvalidUtf8, OutOfMemory }![:0]u16 { // optimistically guess that it will not require surrogate pairs var result = try std.ArrayList(u16).initCapacity(allocator, utf8.len + 1); errdefer result.deinit(); try utf8ToUtf16LeArrayListImpl(&result, utf8, .cannot_encode_surrogate_half); return result.toOwnedSliceSentinel(0); } /// Returns index of next character. If exact fit, returned index equals output slice length. /// Assumes there is enough space for the output. pub fn utf8ToUtf16Le(utf16le: []u16, utf8: []const u8) error{InvalidUtf8}!usize { return utf8ToUtf16LeImpl(utf16le, utf8, .cannot_encode_surrogate_half); } pub fn utf8ToUtf16LeImpl(utf16le: []u16, utf8: []const u8, comptime surrogates: Surrogates) !usize { var dest_index: usize = 0; var remaining = utf8; vectorized: { const chunk_len = std.simd.suggestVectorLength(u16) orelse break :vectorized; const Chunk = @Vector(chunk_len, u8); // Fast path. Check for and encode ASCII characters at the start of the input. while (remaining.len >= chunk_len) { const chunk: Chunk = remaining[0..chunk_len].*; const mask: Chunk = @splat(0x80); if (@reduce(.Or, chunk & mask == mask)) { // found a non ASCII code unit break; } const utf16_chunk = mem.nativeToLittle(@Vector(chunk_len, u16), chunk); utf16le[dest_index..][0..chunk_len].* = utf16_chunk; dest_index += chunk_len; remaining = remaining[chunk_len..]; } } const view = switch (surrogates) { .cannot_encode_surrogate_half => try Utf8View.init(remaining), .can_encode_surrogate_half => try Wtf8View.init(remaining), }; var it = view.iterator(); while (it.nextCodepoint()) |codepoint| { if (codepoint < 0x10000) { utf16le[dest_index] = mem.nativeToLittle(u16, @intCast(codepoint)); dest_index += 1; } else { const high = @as(u16, @intCast((codepoint - 0x10000) >> 10)) + 0xD800; const low = @as(u16, @intCast(codepoint & 0x3FF)) + 0xDC00; utf16le[dest_index..][0..2].* = .{ mem.nativeToLittle(u16, high), mem.nativeToLittle(u16, low) }; dest_index += 2; } } return dest_index; } test utf8ToUtf16Le { var utf16le: [128]u16 = undefined; { const length = try utf8ToUtf16Le(utf16le[0..], "𐐷"); try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16le[0..length])); } { const length = try utf8ToUtf16Le(utf16le[0..], "\u{10FFFF}"); try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16le[0..length])); } { const result = utf8ToUtf16Le(utf16le[0..], "\xf4\x90\x80\x80"); try testing.expectError(error.InvalidUtf8, result); } { const length = try utf8ToUtf16Le(utf16le[0..], "This string has been designed to test the vectorized implementat" ++ "ion by beginning with one hundred twenty-seven ASCII characters¡"); try testing.expectEqualSlices(u8, &.{ 'T', 0, 'h', 0, 'i', 0, 's', 0, ' ', 0, 's', 0, 't', 0, 'r', 0, 'i', 0, 'n', 0, 'g', 0, ' ', 0, 'h', 0, 'a', 0, 's', 0, ' ', 0, 'b', 0, 'e', 0, 'e', 0, 'n', 0, ' ', 0, 'd', 0, 'e', 0, 's', 0, 'i', 0, 'g', 0, 'n', 0, 'e', 0, 'd', 0, ' ', 0, 't', 0, 'o', 0, ' ', 0, 't', 0, 'e', 0, 's', 0, 't', 0, ' ', 0, 't', 0, 'h', 0, 'e', 0, ' ', 0, 'v', 0, 'e', 0, 'c', 0, 't', 0, 'o', 0, 'r', 0, 'i', 0, 'z', 0, 'e', 0, 'd', 0, ' ', 0, 'i', 0, 'm', 0, 'p', 0, 'l', 0, 'e', 0, 'm', 0, 'e', 0, 'n', 0, 't', 0, 'a', 0, 't', 0, 'i', 0, 'o', 0, 'n', 0, ' ', 0, 'b', 0, 'y', 0, ' ', 0, 'b', 0, 'e', 0, 'g', 0, 'i', 0, 'n', 0, 'n', 0, 'i', 0, 'n', 0, 'g', 0, ' ', 0, 'w', 0, 'i', 0, 't', 0, 'h', 0, ' ', 0, 'o', 0, 'n', 0, 'e', 0, ' ', 0, 'h', 0, 'u', 0, 'n', 0, 'd', 0, 'r', 0, 'e', 0, 'd', 0, ' ', 0, 't', 0, 'w', 0, 'e', 0, 'n', 0, 't', 0, 'y', 0, '-', 0, 's', 0, 'e', 0, 'v', 0, 'e', 0, 'n', 0, ' ', 0, 'A', 0, 'S', 0, 'C', 0, 'I', 0, 'I', 0, ' ', 0, 'c', 0, 'h', 0, 'a', 0, 'r', 0, 'a', 0, 'c', 0, 't', 0, 'e', 0, 'r', 0, 's', 0, '¡', 0, }, mem.sliceAsBytes(utf16le[0..length])); } } test utf8ToUtf16LeArrayList { { var list = std.ArrayList(u16).init(testing.allocator); defer list.deinit(); try utf8ToUtf16LeArrayList(&list, "𐐷"); try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(list.items)); } { var list = std.ArrayList(u16).init(testing.allocator); defer list.deinit(); try utf8ToUtf16LeArrayList(&list, "\u{10FFFF}"); try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(list.items)); } { var list = std.ArrayList(u16).init(testing.allocator); defer list.deinit(); const result = utf8ToUtf16LeArrayList(&list, "\xf4\x90\x80\x80"); try testing.expectError(error.InvalidUtf8, result); } } test utf8ToUtf16LeAlloc { { const utf16 = try utf8ToUtf16LeAlloc(testing.allocator, "𐐷"); defer testing.allocator.free(utf16); try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16[0..])); } { const utf16 = try utf8ToUtf16LeAlloc(testing.allocator, "\u{10FFFF}"); defer testing.allocator.free(utf16); try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16[0..])); } { const result = utf8ToUtf16LeAlloc(testing.allocator, "\xf4\x90\x80\x80"); try testing.expectError(error.InvalidUtf8, result); } } test utf8ToUtf16LeAllocZ { { const utf16 = try utf8ToUtf16LeAllocZ(testing.allocator, "𐐷"); defer testing.allocator.free(utf16); try testing.expectEqualSlices(u8, "\x01\xd8\x37\xdc", mem.sliceAsBytes(utf16)); try testing.expect(utf16[2] == 0); } { const utf16 = try utf8ToUtf16LeAllocZ(testing.allocator, "\u{10FFFF}"); defer testing.allocator.free(utf16); try testing.expectEqualSlices(u8, "\xff\xdb\xff\xdf", mem.sliceAsBytes(utf16)); try testing.expect(utf16[2] == 0); } { const result = utf8ToUtf16LeAllocZ(testing.allocator, "\xf4\x90\x80\x80"); try testing.expectError(error.InvalidUtf8, result); } { const utf16 = try utf8ToUtf16LeAllocZ(testing.allocator, "This string has been designed to test the vectorized implementat" ++ "ion by beginning with one hundred twenty-seven ASCII characters¡"); defer testing.allocator.free(utf16); try testing.expectEqualSlices(u8, &.{ 'T', 0, 'h', 0, 'i', 0, 's', 0, ' ', 0, 's', 0, 't', 0, 'r', 0, 'i', 0, 'n', 0, 'g', 0, ' ', 0, 'h', 0, 'a', 0, 's', 0, ' ', 0, 'b', 0, 'e', 0, 'e', 0, 'n', 0, ' ', 0, 'd', 0, 'e', 0, 's', 0, 'i', 0, 'g', 0, 'n', 0, 'e', 0, 'd', 0, ' ', 0, 't', 0, 'o', 0, ' ', 0, 't', 0, 'e', 0, 's', 0, 't', 0, ' ', 0, 't', 0, 'h', 0, 'e', 0, ' ', 0, 'v', 0, 'e', 0, 'c', 0, 't', 0, 'o', 0, 'r', 0, 'i', 0, 'z', 0, 'e', 0, 'd', 0, ' ', 0, 'i', 0, 'm', 0, 'p', 0, 'l', 0, 'e', 0, 'm', 0, 'e', 0, 'n', 0, 't', 0, 'a', 0, 't', 0, 'i', 0, 'o', 0, 'n', 0, ' ', 0, 'b', 0, 'y', 0, ' ', 0, 'b', 0, 'e', 0, 'g', 0, 'i', 0, 'n', 0, 'n', 0, 'i', 0, 'n', 0, 'g', 0, ' ', 0, 'w', 0, 'i', 0, 't', 0, 'h', 0, ' ', 0, 'o', 0, 'n', 0, 'e', 0, ' ', 0, 'h', 0, 'u', 0, 'n', 0, 'd', 0, 'r', 0, 'e', 0, 'd', 0, ' ', 0, 't', 0, 'w', 0, 'e', 0, 'n', 0, 't', 0, 'y', 0, '-', 0, 's', 0, 'e', 0, 'v', 0, 'e', 0, 'n', 0, ' ', 0, 'A', 0, 'S', 0, 'C', 0, 'I', 0, 'I', 0, ' ', 0, 'c', 0, 'h', 0, 'a', 0, 'r', 0, 'a', 0, 'c', 0, 't', 0, 'e', 0, 'r', 0, 's', 0, '¡', 0, }, mem.sliceAsBytes(utf16)); } } test "ArrayList functions on a re-used list" { // utf8ToUtf16LeArrayList { var list = std.ArrayList(u16).init(testing.allocator); defer list.deinit(); const init_slice = utf8ToUtf16LeStringLiteral("abcdefg"); try list.ensureTotalCapacityPrecise(init_slice.len); list.appendSliceAssumeCapacity(init_slice); try utf8ToUtf16LeArrayList(&list, "hijklmnopqrstuvwyxz"); try testing.expectEqualSlices(u16, utf8ToUtf16LeStringLiteral("abcdefghijklmnopqrstuvwyxz"), list.items); } // utf16LeToUtf8ArrayList { var list = std.ArrayList(u8).init(testing.allocator); defer list.deinit(); const init_slice = "abcdefg"; try list.ensureTotalCapacityPrecise(init_slice.len); list.appendSliceAssumeCapacity(init_slice); try utf16LeToUtf8ArrayList(&list, utf8ToUtf16LeStringLiteral("hijklmnopqrstuvwyxz")); try testing.expectEqualStrings("abcdefghijklmnopqrstuvwyxz", list.items); } // wtf8ToWtf16LeArrayList { var list = std.ArrayList(u16).init(testing.allocator); defer list.deinit(); const init_slice = utf8ToUtf16LeStringLiteral("abcdefg"); try list.ensureTotalCapacityPrecise(init_slice.len); list.appendSliceAssumeCapacity(init_slice); try wtf8ToWtf16LeArrayList(&list, "hijklmnopqrstuvwyxz"); try testing.expectEqualSlices(u16, utf8ToUtf16LeStringLiteral("abcdefghijklmnopqrstuvwyxz"), list.items); } // wtf16LeToWtf8ArrayList { var list = std.ArrayList(u8).init(testing.allocator); defer list.deinit(); const init_slice = "abcdefg"; try list.ensureTotalCapacityPrecise(init_slice.len); list.appendSliceAssumeCapacity(init_slice); try wtf16LeToWtf8ArrayList(&list, utf8ToUtf16LeStringLiteral("hijklmnopqrstuvwyxz")); try testing.expectEqualStrings("abcdefghijklmnopqrstuvwyxz", list.items); } } fn utf8ToUtf16LeStringLiteralImpl(comptime utf8: []const u8, comptime surrogates: Surrogates) *const [calcUtf16LeLenImpl(utf8, surrogates) catch |err| @compileError(err):0]u16 { return comptime blk: { const len: usize = calcUtf16LeLenImpl(utf8, surrogates) catch unreachable; var utf16le: [len:0]u16 = [_:0]u16{0} ** len; const utf16le_len = utf8ToUtf16LeImpl(&utf16le, utf8[0..], surrogates) catch |err| @compileError(err); assert(len == utf16le_len); const final = utf16le; break :blk &final; }; } /// Converts a UTF-8 string literal into a UTF-16LE string literal. pub fn utf8ToUtf16LeStringLiteral(comptime utf8: []const u8) *const [calcUtf16LeLen(utf8) catch |err| @compileError(err):0]u16 { return utf8ToUtf16LeStringLiteralImpl(utf8, .cannot_encode_surrogate_half); } /// Converts a WTF-8 string literal into a WTF-16LE string literal. pub fn wtf8ToWtf16LeStringLiteral(comptime wtf8: []const u8) *const [calcWtf16LeLen(wtf8) catch |err| @compileError(err):0]u16 { return utf8ToUtf16LeStringLiteralImpl(wtf8, .can_encode_surrogate_half); } pub fn calcUtf16LeLenImpl(utf8: []const u8, comptime surrogates: Surrogates) !usize { const utf8DecodeImpl = switch (surrogates) { .cannot_encode_surrogate_half => utf8Decode, .can_encode_surrogate_half => wtf8Decode, }; var src_i: usize = 0; var dest_len: usize = 0; while (src_i < utf8.len) { const n = try utf8ByteSequenceLength(utf8[src_i]); const next_src_i = src_i + n; const codepoint = try utf8DecodeImpl(utf8[src_i..next_src_i]); if (codepoint < 0x10000) { dest_len += 1; } else { dest_len += 2; } src_i = next_src_i; } return dest_len; } const CalcUtf16LeLenError = Utf8DecodeError || error{Utf8InvalidStartByte}; /// Returns length in UTF-16LE of UTF-8 slice as length of []u16. /// Length in []u8 is 2*len16. pub fn calcUtf16LeLen(utf8: []const u8) CalcUtf16LeLenError!usize { return calcUtf16LeLenImpl(utf8, .cannot_encode_surrogate_half); } const CalcWtf16LeLenError = Wtf8DecodeError || error{Utf8InvalidStartByte}; /// Returns length in WTF-16LE of WTF-8 slice as length of []u16. /// Length in []u8 is 2*len16. pub fn calcWtf16LeLen(wtf8: []const u8) CalcWtf16LeLenError!usize { return calcUtf16LeLenImpl(wtf8, .can_encode_surrogate_half); } fn testCalcUtf16LeLenImpl(calcUtf16LeLenImpl_: anytype) !void { try testing.expectEqual(@as(usize, 1), try calcUtf16LeLenImpl_("a")); try testing.expectEqual(@as(usize, 10), try calcUtf16LeLenImpl_("abcdefghij")); try testing.expectEqual(@as(usize, 10), try calcUtf16LeLenImpl_("äåéëþüúíóö")); try testing.expectEqual(@as(usize, 5), try calcUtf16LeLenImpl_("こんにちは")); } test calcUtf16LeLen { try testCalcUtf16LeLenImpl(calcUtf16LeLen); try comptime testCalcUtf16LeLenImpl(calcUtf16LeLen); } test calcWtf16LeLen { try testCalcUtf16LeLenImpl(calcWtf16LeLen); try comptime testCalcUtf16LeLenImpl(calcWtf16LeLen); } /// Print the given `utf16le` string, encoded as UTF-8 bytes. /// Unpaired surrogates are replaced by the replacement character (U+FFFD). fn formatUtf16Le( utf16le: []const u16, comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = fmt; _ = options; var buf: [300]u8 = undefined; // just an arbitrary size var it = Utf16LeIterator.init(utf16le); var u8len: usize = 0; while (it.nextCodepoint() catch replacement_character) |codepoint| { u8len += utf8Encode(codepoint, buf[u8len..]) catch utf8Encode(replacement_character, buf[u8len..]) catch unreachable; // make sure there's always enough room for another maximum length UTF-8 codepoint if (u8len + 4 > buf.len) { try writer.writeAll(buf[0..u8len]); u8len = 0; } } try writer.writeAll(buf[0..u8len]); } pub const fmtUtf16le = @compileError("deprecated; renamed to fmtUtf16Le"); /// Return a Formatter for a (potentially ill-formed) UTF-16 LE string, /// which will be converted to UTF-8 during formatting. /// Unpaired surrogates are replaced by the replacement character (U+FFFD). pub fn fmtUtf16Le(utf16le: []const u16) std.fmt.Formatter(formatUtf16Le) { return .{ .data = utf16le }; } test fmtUtf16Le { const expectFmt = testing.expectFmt; try expectFmt("", "{}", .{fmtUtf16Le(utf8ToUtf16LeStringLiteral(""))}); try expectFmt("", "{}", .{fmtUtf16Le(wtf8ToWtf16LeStringLiteral(""))}); try expectFmt("foo", "{}", .{fmtUtf16Le(utf8ToUtf16LeStringLiteral("foo"))}); try expectFmt("foo", "{}", .{fmtUtf16Le(wtf8ToWtf16LeStringLiteral("foo"))}); try expectFmt("𐐷", "{}", .{fmtUtf16Le(wtf8ToWtf16LeStringLiteral("𐐷"))}); try expectFmt("퟿", "{}", .{fmtUtf16Le(&[_]u16{mem.readInt(u16, "\xff\xd7", native_endian)})}); try expectFmt("�", "{}", .{fmtUtf16Le(&[_]u16{mem.readInt(u16, "\x00\xd8", native_endian)})}); try expectFmt("�", "{}", .{fmtUtf16Le(&[_]u16{mem.readInt(u16, "\xff\xdb", native_endian)})}); try expectFmt("�", "{}", .{fmtUtf16Le(&[_]u16{mem.readInt(u16, "\x00\xdc", native_endian)})}); try expectFmt("�", "{}", .{fmtUtf16Le(&[_]u16{mem.readInt(u16, "\xff\xdf", native_endian)})}); try expectFmt("", "{}", .{fmtUtf16Le(&[_]u16{mem.readInt(u16, "\x00\xe0", native_endian)})}); } fn testUtf8ToUtf16LeStringLiteral(utf8ToUtf16LeStringLiteral_: anytype) !void { { const bytes = [_:0]u16{ mem.nativeToLittle(u16, 0x41), }; const utf16 = utf8ToUtf16LeStringLiteral_("A"); try testing.expectEqualSlices(u16, &bytes, utf16); try testing.expect(utf16[1] == 0); } { const bytes = [_:0]u16{ mem.nativeToLittle(u16, 0xD801), mem.nativeToLittle(u16, 0xDC37), }; const utf16 = utf8ToUtf16LeStringLiteral_("𐐷"); try testing.expectEqualSlices(u16, &bytes, utf16); try testing.expect(utf16[2] == 0); } { const bytes = [_:0]u16{ mem.nativeToLittle(u16, 0x02FF), }; const utf16 = utf8ToUtf16LeStringLiteral_("\u{02FF}"); try testing.expectEqualSlices(u16, &bytes, utf16); try testing.expect(utf16[1] == 0); } { const bytes = [_:0]u16{ mem.nativeToLittle(u16, 0x7FF), }; const utf16 = utf8ToUtf16LeStringLiteral_("\u{7FF}"); try testing.expectEqualSlices(u16, &bytes, utf16); try testing.expect(utf16[1] == 0); } { const bytes = [_:0]u16{ mem.nativeToLittle(u16, 0x801), }; const utf16 = utf8ToUtf16LeStringLiteral_("\u{801}"); try testing.expectEqualSlices(u16, &bytes, utf16); try testing.expect(utf16[1] == 0); } { const bytes = [_:0]u16{ mem.nativeToLittle(u16, 0xDBFF), mem.nativeToLittle(u16, 0xDFFF), }; const utf16 = utf8ToUtf16LeStringLiteral_("\u{10FFFF}"); try testing.expectEqualSlices(u16, &bytes, utf16); try testing.expect(utf16[2] == 0); } } test utf8ToUtf16LeStringLiteral { try testUtf8ToUtf16LeStringLiteral(utf8ToUtf16LeStringLiteral); } test wtf8ToWtf16LeStringLiteral { try testUtf8ToUtf16LeStringLiteral(wtf8ToWtf16LeStringLiteral); } fn testUtf8CountCodepoints() !void { try testing.expectEqual(@as(usize, 10), try utf8CountCodepoints("abcdefghij")); try testing.expectEqual(@as(usize, 10), try utf8CountCodepoints("äåéëþüúíóö")); try testing.expectEqual(@as(usize, 5), try utf8CountCodepoints("こんにちは")); // testing.expectError(error.Utf8EncodesSurrogateHalf, utf8CountCodepoints("\xED\xA0\x80")); } test "utf8 count codepoints" { try testUtf8CountCodepoints(); try comptime testUtf8CountCodepoints(); } fn testUtf8ValidCodepoint() !void { try testing.expect(utf8ValidCodepoint('e')); try testing.expect(utf8ValidCodepoint('ë')); try testing.expect(utf8ValidCodepoint('は')); try testing.expect(utf8ValidCodepoint(0xe000)); try testing.expect(utf8ValidCodepoint(0x10ffff)); try testing.expect(!utf8ValidCodepoint(0xd800)); try testing.expect(!utf8ValidCodepoint(0xdfff)); try testing.expect(!utf8ValidCodepoint(0x110000)); } test "utf8 valid codepoint" { try testUtf8ValidCodepoint(); try comptime testUtf8ValidCodepoint(); } /// Returns true if the codepoint is a surrogate (U+DC00 to U+DFFF) pub fn isSurrogateCodepoint(c: u21) bool { return switch (c) { 0xD800...0xDFFF => true, else => false, }; } /// Encodes the given codepoint into a WTF-8 byte sequence. /// c: the codepoint. /// out: the out buffer to write to. Must have a len >= utf8CodepointSequenceLength(c). /// Errors: if c cannot be encoded in WTF-8. /// Returns: the number of bytes written to out. pub fn wtf8Encode(c: u21, out: []u8) error{CodepointTooLarge}!u3 { return utf8EncodeImpl(c, out, .can_encode_surrogate_half); } const Wtf8DecodeError = Utf8Decode2Error || Utf8Decode3AllowSurrogateHalfError || Utf8Decode4Error; /// Deprecated. This function has an awkward API that is too easy to use incorrectly. pub fn wtf8Decode(bytes: []const u8) Wtf8DecodeError!u21 { return switch (bytes.len) { 1 => bytes[0], 2 => utf8Decode2(bytes[0..2].*), 3 => utf8Decode3AllowSurrogateHalf(bytes[0..3].*), 4 => utf8Decode4(bytes[0..4].*), else => unreachable, }; } /// Returns true if the input consists entirely of WTF-8 codepoints /// (all the same restrictions as UTF-8, but allows surrogate codepoints /// U+D800 to U+DFFF). /// Does not check for well-formed WTF-8, meaning that this function /// does not check that all surrogate halves are unpaired. pub fn wtf8ValidateSlice(input: []const u8) bool { return utf8ValidateSliceImpl(input, .can_encode_surrogate_half); } test "validate WTF-8 slice" { try testValidateWtf8Slice(); try comptime testValidateWtf8Slice(); // We skip a variable (based on recommended vector size) chunks of // ASCII characters. Let's make sure we're chunking correctly. const str = [_]u8{'a'} ** 550 ++ "\xc0"; for (0..str.len - 3) |i| { try testing.expect(!wtf8ValidateSlice(str[i..])); } } fn testValidateWtf8Slice() !void { // These are valid/invalid under both UTF-8 and WTF-8 rules. try testing.expect(wtf8ValidateSlice("abc")); try testing.expect(wtf8ValidateSlice("abc\xdf\xbf")); try testing.expect(wtf8ValidateSlice("")); try testing.expect(wtf8ValidateSlice("a")); try testing.expect(wtf8ValidateSlice("abc")); try testing.expect(wtf8ValidateSlice("Ж")); try testing.expect(wtf8ValidateSlice("ЖЖ")); try testing.expect(wtf8ValidateSlice("брэд-ЛГТМ")); try testing.expect(wtf8ValidateSlice("☺☻☹")); try testing.expect(wtf8ValidateSlice("a\u{fffdb}")); try testing.expect(wtf8ValidateSlice("\xf4\x8f\xbf\xbf")); try testing.expect(wtf8ValidateSlice("abc\xdf\xbf")); try testing.expect(!wtf8ValidateSlice("abc\xc0")); try testing.expect(!wtf8ValidateSlice("abc\xc0abc")); try testing.expect(!wtf8ValidateSlice("aa\xe2")); try testing.expect(!wtf8ValidateSlice("\x42\xfa")); try testing.expect(!wtf8ValidateSlice("\x42\xfa\x43")); try testing.expect(!wtf8ValidateSlice("abc\xc0")); try testing.expect(!wtf8ValidateSlice("abc\xc0abc")); try testing.expect(!wtf8ValidateSlice("\xf4\x90\x80\x80")); try testing.expect(!wtf8ValidateSlice("\xf7\xbf\xbf\xbf")); try testing.expect(!wtf8ValidateSlice("\xfb\xbf\xbf\xbf\xbf")); try testing.expect(!wtf8ValidateSlice("\xc0\x80")); // But surrogate codepoints are only valid in WTF-8. try testing.expect(wtf8ValidateSlice("\xed\xa0\x80")); try testing.expect(wtf8ValidateSlice("\xed\xbf\xbf")); } /// Wtf8View iterates the code points of a WTF-8 encoded string, /// including surrogate halves. /// /// ``` /// var wtf8 = (try std.unicode.Wtf8View.init("hi there")).iterator(); /// while (wtf8.nextCodepointSlice()) |codepoint| { /// // note: codepoint could be a surrogate half which is invalid /// // UTF-8, avoid printing or otherwise sending/emitting this directly /// } /// ``` pub const Wtf8View = struct { bytes: []const u8, pub fn init(s: []const u8) error{InvalidWtf8}!Wtf8View { if (!wtf8ValidateSlice(s)) { return error.InvalidWtf8; } return initUnchecked(s); } pub fn initUnchecked(s: []const u8) Wtf8View { return Wtf8View{ .bytes = s }; } pub inline fn initComptime(comptime s: []const u8) Wtf8View { return comptime if (init(s)) |r| r else |err| switch (err) { error.InvalidWtf8 => { @compileError("invalid wtf8"); }, }; } pub fn iterator(s: Wtf8View) Wtf8Iterator { return Wtf8Iterator{ .bytes = s.bytes, .i = 0, }; } }; /// Asserts that `bytes` is valid WTF-8 pub const Wtf8Iterator = struct { bytes: []const u8, i: usize, pub fn nextCodepointSlice(it: *Wtf8Iterator) ?[]const u8 { if (it.i >= it.bytes.len) { return null; } const cp_len = utf8ByteSequenceLength(it.bytes[it.i]) catch unreachable; it.i += cp_len; return it.bytes[it.i - cp_len .. it.i]; } pub fn nextCodepoint(it: *Wtf8Iterator) ?u21 { const slice = it.nextCodepointSlice() orelse return null; return wtf8Decode(slice) catch unreachable; } /// Look ahead at the next n codepoints without advancing the iterator. /// If fewer than n codepoints are available, then return the remainder of the string. pub fn peek(it: *Wtf8Iterator, n: usize) []const u8 { const original_i = it.i; defer it.i = original_i; var end_ix = original_i; var found: usize = 0; while (found < n) : (found += 1) { const next_codepoint = it.nextCodepointSlice() orelse return it.bytes[original_i..]; end_ix += next_codepoint.len; } return it.bytes[original_i..end_ix]; } }; pub fn wtf16LeToWtf8ArrayList(result: *std.ArrayList(u8), utf16le: []const u16) mem.Allocator.Error!void { try result.ensureUnusedCapacity(utf16le.len); return utf16LeToUtf8ArrayListImpl(result, utf16le, .can_encode_surrogate_half); } /// Caller must free returned memory. pub fn wtf16LeToWtf8Alloc(allocator: mem.Allocator, wtf16le: []const u16) mem.Allocator.Error![]u8 { // optimistically guess that it will all be ascii. var result = try std.ArrayList(u8).initCapacity(allocator, wtf16le.len); errdefer result.deinit(); try utf16LeToUtf8ArrayListImpl(&result, wtf16le, .can_encode_surrogate_half); return result.toOwnedSlice(); } /// Caller must free returned memory. pub fn wtf16LeToWtf8AllocZ(allocator: mem.Allocator, wtf16le: []const u16) mem.Allocator.Error![:0]u8 { // optimistically guess that it will all be ascii (and allocate space for the null terminator) var result = try std.ArrayList(u8).initCapacity(allocator, wtf16le.len + 1); errdefer result.deinit(); try utf16LeToUtf8ArrayListImpl(&result, wtf16le, .can_encode_surrogate_half); return result.toOwnedSliceSentinel(0); } pub fn wtf16LeToWtf8(wtf8: []u8, wtf16le: []const u16) usize { return utf16LeToUtf8Impl(wtf8, wtf16le, .can_encode_surrogate_half) catch |err| switch (err) {}; } pub fn wtf8ToWtf16LeArrayList(result: *std.ArrayList(u16), wtf8: []const u8) error{ InvalidWtf8, OutOfMemory }!void { try result.ensureUnusedCapacity(wtf8.len); return utf8ToUtf16LeArrayListImpl(result, wtf8, .can_encode_surrogate_half); } pub fn wtf8ToWtf16LeAlloc(allocator: mem.Allocator, wtf8: []const u8) error{ InvalidWtf8, OutOfMemory }![]u16 { // optimistically guess that it will not require surrogate pairs var result = try std.ArrayList(u16).initCapacity(allocator, wtf8.len); errdefer result.deinit(); try utf8ToUtf16LeArrayListImpl(&result, wtf8, .can_encode_surrogate_half); return result.toOwnedSlice(); } pub fn wtf8ToWtf16LeAllocZ(allocator: mem.Allocator, wtf8: []const u8) error{ InvalidWtf8, OutOfMemory }![:0]u16 { // optimistically guess that it will not require surrogate pairs var result = try std.ArrayList(u16).initCapacity(allocator, wtf8.len + 1); errdefer result.deinit(); try utf8ToUtf16LeArrayListImpl(&result, wtf8, .can_encode_surrogate_half); return result.toOwnedSliceSentinel(0); } /// Returns index of next character. If exact fit, returned index equals output slice length. /// Assumes there is enough space for the output. pub fn wtf8ToWtf16Le(wtf16le: []u16, wtf8: []const u8) error{InvalidWtf8}!usize { return utf8ToUtf16LeImpl(wtf16le, wtf8, .can_encode_surrogate_half); } fn checkUtf8ToUtf16LeOverflowImpl(utf8: []const u8, utf16le: []const u16, comptime surrogates: Surrogates) !bool { // Each u8 in UTF-8/WTF-8 correlates to at most one u16 in UTF-16LE/WTF-16LE. if (utf16le.len >= utf8.len) return false; const utf16_len = calcUtf16LeLenImpl(utf8, surrogates) catch { return switch (surrogates) { .cannot_encode_surrogate_half => error.InvalidUtf8, .can_encode_surrogate_half => error.InvalidWtf8, }; }; return utf16_len > utf16le.len; } /// Checks if calling `utf8ToUtf16Le` would overflow. Might fail if utf8 is not /// valid UTF-8. pub fn checkUtf8ToUtf16LeOverflow(utf8: []const u8, utf16le: []const u16) error{InvalidUtf8}!bool { return checkUtf8ToUtf16LeOverflowImpl(utf8, utf16le, .cannot_encode_surrogate_half); } /// Checks if calling `utf8ToUtf16Le` would overflow. Might fail if wtf8 is not /// valid WTF-8. pub fn checkWtf8ToWtf16LeOverflow(wtf8: []const u8, wtf16le: []const u16) error{InvalidWtf8}!bool { return checkUtf8ToUtf16LeOverflowImpl(wtf8, wtf16le, .can_encode_surrogate_half); } /// Surrogate codepoints (U+D800 to U+DFFF) are replaced by the Unicode replacement /// character (U+FFFD). /// All surrogate codepoints and the replacement character are encoded as three /// bytes, meaning the input and output slices will always be the same length. /// In-place conversion is supported when `utf8` and `wtf8` refer to the same slice. /// Note: If `wtf8` is entirely composed of well-formed UTF-8, then no conversion is necessary. /// `utf8ValidateSlice` can be used to check if lossy conversion is worthwhile. /// If `wtf8` is not valid WTF-8, then `error.InvalidWtf8` is returned. pub fn wtf8ToUtf8Lossy(utf8: []u8, wtf8: []const u8) error{InvalidWtf8}!void { assert(utf8.len >= wtf8.len); const in_place = utf8.ptr == wtf8.ptr; const replacement_char_bytes = comptime blk: { var buf: [3]u8 = undefined; assert((utf8Encode(replacement_character, &buf) catch unreachable) == 3); break :blk buf; }; var dest_i: usize = 0; const view = try Wtf8View.init(wtf8); var it = view.iterator(); while (it.nextCodepointSlice()) |codepoint_slice| { // All surrogate codepoints are encoded as 3 bytes if (codepoint_slice.len == 3) { const codepoint = wtf8Decode(codepoint_slice) catch unreachable; if (isSurrogateCodepoint(codepoint)) { @memcpy(utf8[dest_i..][0..replacement_char_bytes.len], &replacement_char_bytes); dest_i += replacement_char_bytes.len; continue; } } if (!in_place) { @memcpy(utf8[dest_i..][0..codepoint_slice.len], codepoint_slice); } dest_i += codepoint_slice.len; } } pub fn wtf8ToUtf8LossyAlloc(allocator: mem.Allocator, wtf8: []const u8) error{ InvalidWtf8, OutOfMemory }![]u8 { const utf8 = try allocator.alloc(u8, wtf8.len); errdefer allocator.free(utf8); try wtf8ToUtf8Lossy(utf8, wtf8); return utf8; } pub fn wtf8ToUtf8LossyAllocZ(allocator: mem.Allocator, wtf8: []const u8) error{ InvalidWtf8, OutOfMemory }![:0]u8 { const utf8 = try allocator.allocSentinel(u8, wtf8.len, 0); errdefer allocator.free(utf8); try wtf8ToUtf8Lossy(utf8, wtf8); return utf8; } test wtf8ToUtf8Lossy { var buf: [32]u8 = undefined; const invalid_utf8 = "\xff"; try testing.expectError(error.InvalidWtf8, wtf8ToUtf8Lossy(&buf, invalid_utf8)); const ascii = "abcd"; try wtf8ToUtf8Lossy(&buf, ascii); try testing.expectEqualStrings("abcd", buf[0..ascii.len]); const high_surrogate_half = "ab\xed\xa0\xbdcd"; try wtf8ToUtf8Lossy(&buf, high_surrogate_half); try testing.expectEqualStrings("ab\u{FFFD}cd", buf[0..high_surrogate_half.len]); const low_surrogate_half = "ab\xed\xb2\xa9cd"; try wtf8ToUtf8Lossy(&buf, low_surrogate_half); try testing.expectEqualStrings("ab\u{FFFD}cd", buf[0..low_surrogate_half.len]); // If the WTF-8 is not well-formed, each surrogate half is converted into a separate // replacement character instead of being interpreted as a surrogate pair. const encoded_surrogate_pair = "ab\xed\xa0\xbd\xed\xb2\xa9cd"; try wtf8ToUtf8Lossy(&buf, encoded_surrogate_pair); try testing.expectEqualStrings("ab\u{FFFD}\u{FFFD}cd", buf[0..encoded_surrogate_pair.len]); // in place @memcpy(buf[0..low_surrogate_half.len], low_surrogate_half); const slice = buf[0..low_surrogate_half.len]; try wtf8ToUtf8Lossy(slice, slice); try testing.expectEqualStrings("ab\u{FFFD}cd", slice); } test wtf8ToUtf8LossyAlloc { const invalid_utf8 = "\xff"; try testing.expectError(error.InvalidWtf8, wtf8ToUtf8LossyAlloc(testing.allocator, invalid_utf8)); { const ascii = "abcd"; const utf8 = try wtf8ToUtf8LossyAlloc(testing.allocator, ascii); defer testing.allocator.free(utf8); try testing.expectEqualStrings("abcd", utf8); } { const surrogate_half = "ab\xed\xa0\xbdcd"; const utf8 = try wtf8ToUtf8LossyAlloc(testing.allocator, surrogate_half); defer testing.allocator.free(utf8); try testing.expectEqualStrings("ab\u{FFFD}cd", utf8); } { // If the WTF-8 is not well-formed, each surrogate half is converted into a separate // replacement character instead of being interpreted as a surrogate pair. const encoded_surrogate_pair = "ab\xed\xa0\xbd\xed\xb2\xa9cd"; const utf8 = try wtf8ToUtf8LossyAlloc(testing.allocator, encoded_surrogate_pair); defer testing.allocator.free(utf8); try testing.expectEqualStrings("ab\u{FFFD}\u{FFFD}cd", utf8); } } test wtf8ToUtf8LossyAllocZ { const invalid_utf8 = "\xff"; try testing.expectError(error.InvalidWtf8, wtf8ToUtf8LossyAllocZ(testing.allocator, invalid_utf8)); { const ascii = "abcd"; const utf8 = try wtf8ToUtf8LossyAllocZ(testing.allocator, ascii); defer testing.allocator.free(utf8); try testing.expectEqualStrings("abcd", utf8); } { const surrogate_half = "ab\xed\xa0\xbdcd"; const utf8 = try wtf8ToUtf8LossyAllocZ(testing.allocator, surrogate_half); defer testing.allocator.free(utf8); try testing.expectEqualStrings("ab\u{FFFD}cd", utf8); } { // If the WTF-8 is not well-formed, each surrogate half is converted into a separate // replacement character instead of being interpreted as a surrogate pair. const encoded_surrogate_pair = "ab\xed\xa0\xbd\xed\xb2\xa9cd"; const utf8 = try wtf8ToUtf8LossyAllocZ(testing.allocator, encoded_surrogate_pair); defer testing.allocator.free(utf8); try testing.expectEqualStrings("ab\u{FFFD}\u{FFFD}cd", utf8); } } pub const Wtf16LeIterator = struct { bytes: []const u8, i: usize, pub fn init(s: []const u16) Wtf16LeIterator { return Wtf16LeIterator{ .bytes = mem.sliceAsBytes(s), .i = 0, }; } /// If the next codepoint is encoded by a surrogate pair, returns the /// codepoint that the surrogate pair represents. /// If the next codepoint is an unpaired surrogate, returns the codepoint /// of the unpaired surrogate. pub fn nextCodepoint(it: *Wtf16LeIterator) ?u21 { assert(it.i <= it.bytes.len); if (it.i == it.bytes.len) return null; var code_units: [2]u16 = undefined; code_units[0] = mem.readInt(u16, it.bytes[it.i..][0..2], .little); it.i += 2; surrogate_pair: { if (utf16IsHighSurrogate(code_units[0])) { if (it.i >= it.bytes.len) break :surrogate_pair; code_units[1] = mem.readInt(u16, it.bytes[it.i..][0..2], .little); const codepoint = utf16DecodeSurrogatePair(&code_units) catch break :surrogate_pair; it.i += 2; return codepoint; } } return code_units[0]; } }; test "non-well-formed WTF-8 does not roundtrip" { // This encodes the surrogate pair U+D83D U+DCA9. // The well-formed version of this would be U+1F4A9 which is \xF0\x9F\x92\xA9. const non_well_formed_wtf8 = "\xed\xa0\xbd\xed\xb2\xa9"; var wtf16_buf: [2]u16 = undefined; const wtf16_len = try wtf8ToWtf16Le(&wtf16_buf, non_well_formed_wtf8); const wtf16 = wtf16_buf[0..wtf16_len]; try testing.expectEqualSlices(u16, &[_]u16{ mem.nativeToLittle(u16, 0xD83D), // high surrogate mem.nativeToLittle(u16, 0xDCA9), // low surrogate }, wtf16); var wtf8_buf: [4]u8 = undefined; const wtf8_len = wtf16LeToWtf8(&wtf8_buf, wtf16); const wtf8 = wtf8_buf[0..wtf8_len]; // Converting to WTF-16 and back results in well-formed WTF-8, // but it does not match the input WTF-8 try testing.expectEqualSlices(u8, "\xf0\x9f\x92\xa9", wtf8); } fn testRoundtripWtf8(wtf8: []const u8) !void { // Buffer { var wtf16_buf: [32]u16 = undefined; const wtf16_len = try wtf8ToWtf16Le(&wtf16_buf, wtf8); try testing.expectEqual(wtf16_len, calcWtf16LeLen(wtf8)); try testing.expectEqual(false, checkWtf8ToWtf16LeOverflow(wtf8, &wtf16_buf)); const wtf16 = wtf16_buf[0..wtf16_len]; var roundtripped_buf: [32]u8 = undefined; const roundtripped_len = wtf16LeToWtf8(&roundtripped_buf, wtf16); const roundtripped = roundtripped_buf[0..roundtripped_len]; try testing.expectEqualSlices(u8, wtf8, roundtripped); } // Alloc { const wtf16 = try wtf8ToWtf16LeAlloc(testing.allocator, wtf8); defer testing.allocator.free(wtf16); const roundtripped = try wtf16LeToWtf8Alloc(testing.allocator, wtf16); defer testing.allocator.free(roundtripped); try testing.expectEqualSlices(u8, wtf8, roundtripped); } // AllocZ { const wtf16 = try wtf8ToWtf16LeAllocZ(testing.allocator, wtf8); defer testing.allocator.free(wtf16); const roundtripped = try wtf16LeToWtf8AllocZ(testing.allocator, wtf16); defer testing.allocator.free(roundtripped); try testing.expectEqualSlices(u8, wtf8, roundtripped); } } test "well-formed WTF-8 roundtrips" { try testRoundtripWtf8("\xed\x9f\xbf"); // not a surrogate half try testRoundtripWtf8("\xed\xa0\xbd"); // high surrogate try testRoundtripWtf8("\xed\xb2\xa9"); // low surrogate try testRoundtripWtf8("\xed\xa0\xbd \xed\xb2\xa9"); // try testRoundtripWtf8("\xed\xa0\x80\xed\xaf\xbf"); // try testRoundtripWtf8("\xed\xa0\x80\xee\x80\x80"); // try testRoundtripWtf8("\xed\x9f\xbf\xed\xb0\x80"); // try testRoundtripWtf8("a\xed\xb0\x80"); // try testRoundtripWtf8("\xf0\x9f\x92\xa9"); // U+1F4A9, encoded as a surrogate pair in WTF-16 } fn testRoundtripWtf16(wtf16le: []const u16) !void { // Buffer { var wtf8_buf: [32]u8 = undefined; const wtf8_len = wtf16LeToWtf8(&wtf8_buf, wtf16le); const wtf8 = wtf8_buf[0..wtf8_len]; var roundtripped_buf: [32]u16 = undefined; const roundtripped_len = try wtf8ToWtf16Le(&roundtripped_buf, wtf8); const roundtripped = roundtripped_buf[0..roundtripped_len]; try testing.expectEqualSlices(u16, wtf16le, roundtripped); } // Alloc { const wtf8 = try wtf16LeToWtf8Alloc(testing.allocator, wtf16le); defer testing.allocator.free(wtf8); const roundtripped = try wtf8ToWtf16LeAlloc(testing.allocator, wtf8); defer testing.allocator.free(roundtripped); try testing.expectEqualSlices(u16, wtf16le, roundtripped); } // AllocZ { const wtf8 = try wtf16LeToWtf8AllocZ(testing.allocator, wtf16le); defer testing.allocator.free(wtf8); const roundtripped = try wtf8ToWtf16LeAllocZ(testing.allocator, wtf8); defer testing.allocator.free(roundtripped); try testing.expectEqualSlices(u16, wtf16le, roundtripped); } } test "well-formed WTF-16 roundtrips" { try testRoundtripWtf16(&[_]u16{ mem.nativeToLittle(u16, 0xD83D), // high surrogate mem.nativeToLittle(u16, 0xDCA9), // low surrogate }); try testRoundtripWtf16(&[_]u16{ mem.nativeToLittle(u16, 0xD83D), // high surrogate mem.nativeToLittle(u16, ' '), // not surrogate mem.nativeToLittle(u16, 0xDCA9), // low surrogate }); try testRoundtripWtf16(&[_]u16{ mem.nativeToLittle(u16, 0xD800), // high surrogate mem.nativeToLittle(u16, 0xDBFF), // high surrogate }); try testRoundtripWtf16(&[_]u16{ mem.nativeToLittle(u16, 0xD800), // high surrogate mem.nativeToLittle(u16, 0xE000), // not surrogate }); try testRoundtripWtf16(&[_]u16{ mem.nativeToLittle(u16, 0xD7FF), // not surrogate mem.nativeToLittle(u16, 0xDC00), // low surrogate }); try testRoundtripWtf16(&[_]u16{ mem.nativeToLittle(u16, 0x61), // not surrogate mem.nativeToLittle(u16, 0xDC00), // low surrogate }); try testRoundtripWtf16(&[_]u16{ mem.nativeToLittle(u16, 0xDC00), // low surrogate }); } /// Returns the length, in bytes, that would be necessary to encode the /// given WTF-16 LE slice as WTF-8. pub fn calcWtf8Len(wtf16le: []const u16) usize { var it = Wtf16LeIterator.init(wtf16le); var num_wtf8_bytes: usize = 0; while (it.nextCodepoint()) |codepoint| { // Note: If utf8CodepointSequenceLength is ever changed to error on surrogate // codepoints, then it would no longer be eligible to be used in this context. num_wtf8_bytes += utf8CodepointSequenceLength(codepoint) catch |err| switch (err) { error.CodepointTooLarge => unreachable, }; } return num_wtf8_bytes; } fn testCalcWtf8Len() !void { const L = utf8ToUtf16LeStringLiteral; try testing.expectEqual(@as(usize, 1), calcWtf8Len(L("a"))); try testing.expectEqual(@as(usize, 10), calcWtf8Len(L("abcdefghij"))); // unpaired surrogate try testing.expectEqual(@as(usize, 3), calcWtf8Len(&[_]u16{ mem.nativeToLittle(u16, 0xD800), })); try testing.expectEqual(@as(usize, 15), calcWtf8Len(L("こんにちは"))); // First codepoints that are encoded as 1, 2, 3, and 4 bytes try testing.expectEqual(@as(usize, 1 + 2 + 3 + 4), calcWtf8Len(L("\u{0}\u{80}\u{800}\u{10000}"))); } test "calculate wtf8 string length of given wtf16 string" { try testCalcWtf8Len(); try comptime testCalcWtf8Len(); }