struct parse [src]

Alias for std.zon.parse

The simplest way to parse ZON at runtime is to use fromSlice. If you need to parse ZON at compile time, you may use @import. Parsing from individual Zoir nodes is also available: fromZoir fromZoirNode For lower level control, it is possible to operate on std.zig.Zoir directly.

Members

Source

//! The simplest way to parse ZON at runtime is to use `fromSlice`. If you need to parse ZON at //! compile time, you may use `@import`. //! //! Parsing from individual Zoir nodes is also available: //! * `fromZoir` //! * `fromZoirNode` //! //! For lower level control, it is possible to operate on `std.zig.Zoir` directly. const std = @import("std"); const builtin = @import("builtin"); const Allocator = std.mem.Allocator; const Ast = std.zig.Ast; const Zoir = std.zig.Zoir; const ZonGen = std.zig.ZonGen; const TokenIndex = std.zig.Ast.TokenIndex; const Base = std.zig.number_literal.Base; const StrLitErr = std.zig.string_literal.Error; const NumberLiteralError = std.zig.number_literal.Error; const assert = std.debug.assert; const ArrayListUnmanaged = std.ArrayListUnmanaged; /// Rename when adding or removing support for a type. const valid_types = {}; /// Configuration for the runtime parser. pub const Options = struct { /// If true, unknown fields do not error. ignore_unknown_fields: bool = false, /// If true, the parser cleans up partially parsed values on error. This requires some extra /// bookkeeping, so you may want to turn it off if you don't need this feature (e.g. because /// you're using arena allocation.) free_on_error: bool = true, }; pub const Error = union(enum) { zoir: Zoir.CompileError, type_check: Error.TypeCheckFailure, pub const Note = union(enum) { zoir: Zoir.CompileError.Note, type_check: TypeCheckFailure.Note, pub const Iterator = struct { index: usize = 0, err: Error, status: *const Status, pub fn next(self: *@This()) ?Note { switch (self.err) { .zoir => |err| { if (self.index >= err.note_count) return null; const zoir = self.status.zoir.?; const note = err.getNotes(zoir)[self.index]; self.index += 1; return .{ .zoir = note }; }, .type_check => |err| { if (self.index >= err.getNoteCount()) return null; const note = err.getNote(self.index); self.index += 1; return .{ .type_check = note }; }, } } }; fn formatMessage( self: []const u8, comptime f: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = f; _ = options; // Just writes the string for now, but we're keeping this behind a formatter so we have // the option to extend it in the future to print more advanced messages (like `Error` // does) without breaking the API. try writer.writeAll(self); } pub fn fmtMessage(self: Note, status: *const Status) std.fmt.Formatter(Note.formatMessage) { return .{ .data = switch (self) { .zoir => |note| note.msg.get(status.zoir.?), .type_check => |note| note.msg, } }; } pub fn getLocation(self: Note, status: *const Status) Ast.Location { const ast = status.ast.?; switch (self) { .zoir => |note| return zoirErrorLocation(ast, note.token, note.node_or_offset), .type_check => |note| return ast.tokenLocation(note.offset, note.token), } } }; pub const Iterator = struct { index: usize = 0, status: *const Status, pub fn next(self: *@This()) ?Error { const zoir = self.status.zoir orelse return null; if (self.index < zoir.compile_errors.len) { const result: Error = .{ .zoir = zoir.compile_errors[self.index] }; self.index += 1; return result; } if (self.status.type_check) |err| { if (self.index == zoir.compile_errors.len) { const result: Error = .{ .type_check = err }; self.index += 1; return result; } } return null; } }; const TypeCheckFailure = struct { const Note = struct { token: Ast.TokenIndex, offset: u32, msg: []const u8, owned: bool, fn deinit(self: @This(), gpa: Allocator) void { if (self.owned) gpa.free(self.msg); } }; message: []const u8, owned: bool, token: Ast.TokenIndex, offset: u32, note: ?@This().Note, fn deinit(self: @This(), gpa: Allocator) void { if (self.note) |note| note.deinit(gpa); if (self.owned) gpa.free(self.message); } fn getNoteCount(self: @This()) usize { return @intFromBool(self.note != null); } fn getNote(self: @This(), index: usize) @This().Note { assert(index == 0); return self.note.?; } }; const FormatMessage = struct { err: Error, status: *const Status, }; fn formatMessage( self: FormatMessage, comptime f: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = f; _ = options; switch (self.err) { .zoir => |err| try writer.writeAll(err.msg.get(self.status.zoir.?)), .type_check => |tc| try writer.writeAll(tc.message), } } pub fn fmtMessage(self: @This(), status: *const Status) std.fmt.Formatter(formatMessage) { return .{ .data = .{ .err = self, .status = status, } }; } pub fn getLocation(self: @This(), status: *const Status) Ast.Location { const ast = status.ast.?; return switch (self) { .zoir => |err| return zoirErrorLocation( status.ast.?, err.token, err.node_or_offset, ), .type_check => |err| return ast.tokenLocation(err.offset, err.token), }; } pub fn iterateNotes(self: @This(), status: *const Status) Note.Iterator { return .{ .err = self, .status = status }; } fn zoirErrorLocation(ast: Ast, maybe_token: Ast.OptionalTokenIndex, node_or_offset: u32) Ast.Location { if (maybe_token.unwrap()) |token| { var location = ast.tokenLocation(0, token); location.column += node_or_offset; return location; } else { const ast_node: Ast.Node.Index = @enumFromInt(node_or_offset); const token = ast.nodeMainToken(ast_node); return ast.tokenLocation(0, token); } } }; /// Information about the success or failure of a parse. pub const Status = struct { ast: ?Ast = null, zoir: ?Zoir = null, type_check: ?Error.TypeCheckFailure = null, fn assertEmpty(self: Status) void { assert(self.ast == null); assert(self.zoir == null); assert(self.type_check == null); } pub fn deinit(self: *Status, gpa: Allocator) void { if (self.ast) |*ast| ast.deinit(gpa); if (self.zoir) |*zoir| zoir.deinit(gpa); if (self.type_check) |tc| tc.deinit(gpa); self.* = undefined; } pub fn iterateErrors(self: *const Status) Error.Iterator { return .{ .status = self }; } pub fn format( self: *const @This(), comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = fmt; _ = options; var errors = self.iterateErrors(); while (errors.next()) |err| { const loc = err.getLocation(self); const msg = err.fmtMessage(self); try writer.print("{}:{}: error: {}\n", .{ loc.line + 1, loc.column + 1, msg }); var notes = err.iterateNotes(self); while (notes.next()) |note| { const note_loc = note.getLocation(self); const note_msg = note.fmtMessage(self); try writer.print("{}:{}: note: {s}\n", .{ note_loc.line + 1, note_loc.column + 1, note_msg, }); } } } }; /// Parses the given slice as ZON. /// /// Returns `error.OutOfMemory` on allocation failure, or `error.ParseZon` error if the ZON is /// invalid or can not be deserialized into type `T`. /// /// When the parser returns `error.ParseZon`, it will also store a human readable explanation in /// `status` if non null. If status is not null, it must be initialized to `.{}`. pub fn fromSlice( /// The type to deserialize into. May not be or contain any of the following types: /// * Any comptime-only type, except in a comptime field /// * `type` /// * `void`, except as a union payload /// * `noreturn` /// * An error set/error union /// * A many-pointer or C-pointer /// * An opaque type, including `anyopaque` /// * An async frame type, including `anyframe` and `anyframe->T` /// * A function /// /// All other types are valid. Unsupported types will fail at compile time. T: type, gpa: Allocator, source: [:0]const u8, status: ?*Status, options: Options, ) error{ OutOfMemory, ParseZon }!T { if (status) |s| s.assertEmpty(); var ast = try std.zig.Ast.parse(gpa, source, .zon); defer if (status == null) ast.deinit(gpa); if (status) |s| s.ast = ast; // If there's no status, Zoir exists for the lifetime of this function. If there is a status, // ownership is transferred to status. var zoir = try ZonGen.generate(gpa, ast, .{ .parse_str_lits = false }); defer if (status == null) zoir.deinit(gpa); if (status) |s| s.* = .{}; return fromZoir(T, gpa, ast, zoir, status, options); } /// Like `fromSlice`, but operates on `Zoir` instead of ZON source. pub fn fromZoir( T: type, gpa: Allocator, ast: Ast, zoir: Zoir, status: ?*Status, options: Options, ) error{ OutOfMemory, ParseZon }!T { return fromZoirNode(T, gpa, ast, zoir, .root, status, options); } /// Like `fromZoir`, but the parse starts on `node` instead of root. pub fn fromZoirNode( T: type, gpa: Allocator, ast: Ast, zoir: Zoir, node: Zoir.Node.Index, status: ?*Status, options: Options, ) error{ OutOfMemory, ParseZon }!T { comptime assert(canParseType(T)); if (status) |s| { s.assertEmpty(); s.ast = ast; s.zoir = zoir; } if (zoir.hasCompileErrors()) { return error.ParseZon; } var parser: Parser = .{ .gpa = gpa, .ast = ast, .zoir = zoir, .options = options, .status = status, }; return parser.parseExpr(T, node); } /// Frees ZON values. /// /// Provided for convenience, you may also free these values on your own using the same allocator /// passed into the parser. /// /// Asserts at comptime that sufficient information is available via the type system to free this /// value. Untagged unions, for example, will fail this assert. pub fn free(gpa: Allocator, value: anytype) void { const Value = @TypeOf(value); _ = valid_types; switch (@typeInfo(Value)) { .bool, .int, .float, .@"enum" => {}, .pointer => |pointer| { switch (pointer.size) { .one => { free(gpa, value.*); gpa.destroy(value); }, .slice => { for (value) |item| { free(gpa, item); } gpa.free(value); }, .many, .c => comptime unreachable, } }, .array => for (value) |item| { free(gpa, item); }, .@"struct" => |@"struct"| inline for (@"struct".fields) |field| { free(gpa, @field(value, field.name)); }, .@"union" => |@"union"| if (@"union".tag_type == null) { if (comptime requiresAllocator(Value)) unreachable; } else switch (value) { inline else => |_, tag| { free(gpa, @field(value, @tagName(tag))); }, }, .optional => if (value) |some| { free(gpa, some); }, .vector => |vector| for (0..vector.len) |i| free(gpa, value[i]), .void => {}, else => comptime unreachable, } } fn requiresAllocator(T: type) bool { _ = valid_types; return switch (@typeInfo(T)) { .pointer => true, .array => |array| return array.len > 0 and requiresAllocator(array.child), .@"struct" => |@"struct"| inline for (@"struct".fields) |field| { if (requiresAllocator(field.type)) { break true; } } else false, .@"union" => |@"union"| inline for (@"union".fields) |field| { if (requiresAllocator(field.type)) { break true; } } else false, .optional => |optional| requiresAllocator(optional.child), .vector => |vector| return vector.len > 0 and requiresAllocator(vector.child), else => false, }; } const Parser = struct { gpa: Allocator, ast: Ast, zoir: Zoir, status: ?*Status, options: Options, fn parseExpr(self: *@This(), T: type, node: Zoir.Node.Index) error{ ParseZon, OutOfMemory }!T { return self.parseExprInner(T, node) catch |err| switch (err) { error.WrongType => return self.failExpectedType(T, node), else => |e| return e, }; } fn parseExprInner( self: *@This(), T: type, node: Zoir.Node.Index, ) error{ ParseZon, OutOfMemory, WrongType }!T { switch (@typeInfo(T)) { .optional => |optional| if (node.get(self.zoir) == .null) { return null; } else { return try self.parseExprInner(optional.child, node); }, .bool => return self.parseBool(node), .int => return self.parseInt(T, node), .float => return self.parseFloat(T, node), .@"enum" => return self.parseEnumLiteral(T, node), .pointer => |pointer| switch (pointer.size) { .one => { const result = try self.gpa.create(pointer.child); errdefer self.gpa.destroy(result); result.* = try self.parseExprInner(pointer.child, node); return result; }, .slice => return self.parseSlicePointer(T, node), else => comptime unreachable, }, .array => return self.parseArray(T, node), .@"struct" => |@"struct"| if (@"struct".is_tuple) return self.parseTuple(T, node) else return self.parseStruct(T, node), .@"union" => return self.parseUnion(T, node), .vector => return self.parseVector(T, node), else => comptime unreachable, } } /// Prints a message of the form `expected T` where T is first converted to a ZON type. For /// example, `**?**u8` becomes `?u8`, and types that involve user specified type names are just /// referred to by the type of container. fn failExpectedType( self: @This(), T: type, node: Zoir.Node.Index, ) error{ ParseZon, OutOfMemory } { @branchHint(.cold); return self.failExpectedTypeInner(T, false, node); } fn failExpectedTypeInner( self: @This(), T: type, opt: bool, node: Zoir.Node.Index, ) error{ ParseZon, OutOfMemory } { _ = valid_types; switch (@typeInfo(T)) { .@"struct" => |@"struct"| if (@"struct".is_tuple) { if (opt) { return self.failNode(node, "expected optional tuple"); } else { return self.failNode(node, "expected tuple"); } } else { if (opt) { return self.failNode(node, "expected optional struct"); } else { return self.failNode(node, "expected struct"); } }, .@"union" => if (opt) { return self.failNode(node, "expected optional union"); } else { return self.failNode(node, "expected union"); }, .array => if (opt) { return self.failNode(node, "expected optional array"); } else { return self.failNode(node, "expected array"); }, .pointer => |pointer| switch (pointer.size) { .one => return self.failExpectedTypeInner(pointer.child, opt, node), .slice => { if (pointer.child == u8 and pointer.is_const and (pointer.sentinel() == null or pointer.sentinel() == 0) and pointer.alignment == 1) { if (opt) { return self.failNode(node, "expected optional string"); } else { return self.failNode(node, "expected string"); } } else { if (opt) { return self.failNode(node, "expected optional array"); } else { return self.failNode(node, "expected array"); } } }, else => comptime unreachable, }, .vector, .bool, .int, .float => if (opt) { return self.failNodeFmt(node, "expected type '{s}'", .{@typeName(?T)}); } else { return self.failNodeFmt(node, "expected type '{s}'", .{@typeName(T)}); }, .@"enum" => if (opt) { return self.failNode(node, "expected optional enum literal"); } else { return self.failNode(node, "expected enum literal"); }, .optional => |optional| { return self.failExpectedTypeInner(optional.child, true, node); }, else => comptime unreachable, } } fn parseBool(self: @This(), node: Zoir.Node.Index) !bool { switch (node.get(self.zoir)) { .true => return true, .false => return false, else => return error.WrongType, } } fn parseInt(self: @This(), T: type, node: Zoir.Node.Index) !T { switch (node.get(self.zoir)) { .int_literal => |int| switch (int) { .small => |val| return std.math.cast(T, val) orelse self.failCannotRepresent(T, node), .big => |val| return val.toInt(T) catch self.failCannotRepresent(T, node), }, .float_literal => |val| return intFromFloatExact(T, val) orelse self.failCannotRepresent(T, node), .char_literal => |val| return std.math.cast(T, val) orelse self.failCannotRepresent(T, node), else => return error.WrongType, } } fn parseFloat(self: @This(), T: type, node: Zoir.Node.Index) !T { switch (node.get(self.zoir)) { .int_literal => |int| switch (int) { .small => |val| return @floatFromInt(val), .big => |val| return val.toFloat(T), }, .float_literal => |val| return @floatCast(val), .pos_inf => return std.math.inf(T), .neg_inf => return -std.math.inf(T), .nan => return std.math.nan(T), .char_literal => |val| return @floatFromInt(val), else => return error.WrongType, } } fn parseEnumLiteral(self: @This(), T: type, node: Zoir.Node.Index) !T { switch (node.get(self.zoir)) { .enum_literal => |field_name| { // Create a comptime string map for the enum fields const enum_fields = @typeInfo(T).@"enum".fields; comptime var kvs_list: [enum_fields.len]struct { []const u8, T } = undefined; inline for (enum_fields, 0..) |field, i| { kvs_list[i] = .{ field.name, @enumFromInt(field.value) }; } const enum_tags = std.StaticStringMap(T).initComptime(kvs_list); // Get the tag if it exists const field_name_str = field_name.get(self.zoir); return enum_tags.get(field_name_str) orelse self.failUnexpected(T, "enum literal", node, null, field_name_str); }, else => return error.WrongType, } } fn parseSlicePointer(self: *@This(), T: type, node: Zoir.Node.Index) !T { switch (node.get(self.zoir)) { .string_literal => return self.parseString(T, node), .array_literal => |nodes| return self.parseSlice(T, nodes), .empty_literal => return self.parseSlice(T, .{ .start = node, .len = 0 }), else => return error.WrongType, } } fn parseString(self: *@This(), T: type, node: Zoir.Node.Index) !T { const ast_node = node.getAstNode(self.zoir); const pointer = @typeInfo(T).pointer; var size_hint = ZonGen.strLitSizeHint(self.ast, ast_node); if (pointer.sentinel() != null) size_hint += 1; var buf: std.ArrayListUnmanaged(u8) = try .initCapacity(self.gpa, size_hint); defer buf.deinit(self.gpa); switch (try ZonGen.parseStrLit(self.ast, ast_node, buf.writer(self.gpa))) { .success => {}, .failure => |err| { const token = self.ast.nodeMainToken(ast_node); const raw_string = self.ast.tokenSlice(token); return self.failTokenFmt(token, @intCast(err.offset()), "{s}", .{err.fmt(raw_string)}); }, } if (pointer.child != u8 or pointer.size != .slice or !pointer.is_const or (pointer.sentinel() != null and pointer.sentinel() != 0) or pointer.alignment != 1) { return error.WrongType; } if (pointer.sentinel() != null) { return buf.toOwnedSliceSentinel(self.gpa, 0); } else { return buf.toOwnedSlice(self.gpa); } } fn parseSlice(self: *@This(), T: type, nodes: Zoir.Node.Index.Range) !T { const pointer = @typeInfo(T).pointer; // Make sure we're working with a slice switch (pointer.size) { .slice => {}, .one, .many, .c => comptime unreachable, } // Allocate the slice const slice = try self.gpa.allocWithOptions( pointer.child, nodes.len, pointer.alignment, pointer.sentinel(), ); errdefer self.gpa.free(slice); // Parse the elements and return the slice for (slice, 0..) |*elem, i| { errdefer if (self.options.free_on_error) { for (slice[0..i]) |item| { free(self.gpa, item); } }; elem.* = try self.parseExpr(pointer.child, nodes.at(@intCast(i))); } return slice; } fn parseArray(self: *@This(), T: type, node: Zoir.Node.Index) !T { const nodes: Zoir.Node.Index.Range = switch (node.get(self.zoir)) { .array_literal => |nodes| nodes, .empty_literal => .{ .start = node, .len = 0 }, else => return error.WrongType, }; const array_info = @typeInfo(T).array; // Check if the size matches if (nodes.len < array_info.len) { return self.failNodeFmt( node, "expected {} array elements; found {}", .{ array_info.len, nodes.len }, ); } else if (nodes.len > array_info.len) { return self.failNodeFmt( nodes.at(array_info.len), "index {} outside of array of length {}", .{ array_info.len, array_info.len }, ); } // Parse the elements and return the array var result: T = undefined; for (&result, 0..) |*elem, i| { // If we fail to parse this field, free all fields before it errdefer if (self.options.free_on_error) { for (result[0..i]) |item| { free(self.gpa, item); } }; elem.* = try self.parseExpr(array_info.child, nodes.at(@intCast(i))); } return result; } fn parseStruct(self: *@This(), T: type, node: Zoir.Node.Index) !T { const repr = node.get(self.zoir); const fields: @FieldType(Zoir.Node, "struct_literal") = switch (repr) { .struct_literal => |nodes| nodes, .empty_literal => .{ .names = &.{}, .vals = .{ .start = node, .len = 0 } }, else => return error.WrongType, }; const field_infos = @typeInfo(T).@"struct".fields; // Build a map from field name to index. // The special value `comptime_field` indicates that this is actually a comptime field. const comptime_field = std.math.maxInt(usize); const field_indices: std.StaticStringMap(usize) = comptime b: { var kvs_list: [field_infos.len]struct { []const u8, usize } = undefined; for (&kvs_list, field_infos, 0..) |*kv, field, i| { kv.* = .{ field.name, if (field.is_comptime) comptime_field else i }; } break :b .initComptime(kvs_list); }; // Parse the struct var result: T = undefined; var field_found: [field_infos.len]bool = @splat(false); // If we fail partway through, free all already initialized fields var initialized: usize = 0; errdefer if (self.options.free_on_error and field_infos.len > 0) { for (fields.names[0..initialized]) |name_runtime| { switch (field_indices.get(name_runtime.get(self.zoir)) orelse continue) { inline 0...(field_infos.len - 1) => |name_index| { const name = field_infos[name_index].name; free(self.gpa, @field(result, name)); }, else => unreachable, // Can't be out of bounds } } }; // Fill in the fields we found for (0..fields.names.len) |i| { const name = fields.names[i].get(self.zoir); const field_index = field_indices.get(name) orelse { if (self.options.ignore_unknown_fields) continue; return self.failUnexpected(T, "field", node, i, name); }; if (field_index == comptime_field) { return self.failComptimeField(node, i); } // Mark the field as found. Assert that the found array is not zero length to satisfy // the type checker (it can't be since we made it into an iteration of this loop.) if (field_found.len == 0) unreachable; field_found[field_index] = true; switch (field_index) { inline 0...(field_infos.len - 1) => |j| { if (field_infos[j].is_comptime) unreachable; @field(result, field_infos[j].name) = try self.parseExpr( field_infos[j].type, fields.vals.at(@intCast(i)), ); }, else => unreachable, // Can't be out of bounds } initialized += 1; } // Fill in any missing default fields inline for (field_found, 0..) |found, i| { if (!found) { const field_info = field_infos[i]; if (field_info.default_value_ptr) |default| { const typed: *const field_info.type = @ptrCast(@alignCast(default)); @field(result, field_info.name) = typed.*; } else { return self.failNodeFmt( node, "missing required field {s}", .{field_infos[i].name}, ); } } } return result; } fn parseTuple(self: *@This(), T: type, node: Zoir.Node.Index) !T { const nodes: Zoir.Node.Index.Range = switch (node.get(self.zoir)) { .array_literal => |nodes| nodes, .empty_literal => .{ .start = node, .len = 0 }, else => return error.WrongType, }; var result: T = undefined; const field_infos = @typeInfo(T).@"struct".fields; if (nodes.len > field_infos.len) { return self.failNodeFmt( nodes.at(field_infos.len), "index {} outside of tuple length {}", .{ field_infos.len, field_infos.len }, ); } inline for (0..field_infos.len) |i| { // Check if we're out of bounds if (i >= nodes.len) { if (field_infos[i].default_value_ptr) |default| { const typed: *const field_infos[i].type = @ptrCast(@alignCast(default)); @field(result, field_infos[i].name) = typed.*; } else { return self.failNodeFmt(node, "missing tuple field with index {}", .{i}); } } else { // If we fail to parse this field, free all fields before it errdefer if (self.options.free_on_error) { inline for (0..i) |j| { if (j >= i) break; free(self.gpa, result[j]); } }; if (field_infos[i].is_comptime) { return self.failComptimeField(node, i); } else { result[i] = try self.parseExpr(field_infos[i].type, nodes.at(i)); } } } return result; } fn parseUnion(self: *@This(), T: type, node: Zoir.Node.Index) !T { const @"union" = @typeInfo(T).@"union"; const field_infos = @"union".fields; if (field_infos.len == 0) comptime unreachable; // Gather info on the fields const field_indices = b: { comptime var kvs_list: [field_infos.len]struct { []const u8, usize } = undefined; inline for (field_infos, 0..) |field, i| { kvs_list[i] = .{ field.name, i }; } break :b std.StaticStringMap(usize).initComptime(kvs_list); }; // Parse the union switch (node.get(self.zoir)) { .enum_literal => |field_name| { // The union must be tagged for an enum literal to coerce to it if (@"union".tag_type == null) { return error.WrongType; } // Get the index of the named field. We don't use `parseEnum` here as // the order of the enum and the order of the union might not match! const field_index = b: { const field_name_str = field_name.get(self.zoir); break :b field_indices.get(field_name_str) orelse return self.failUnexpected(T, "field", node, null, field_name_str); }; // Initialize the union from the given field. switch (field_index) { inline 0...field_infos.len - 1 => |i| { // Fail if the field is not void if (field_infos[i].type != void) return self.failNode(node, "expected union"); // Instantiate the union return @unionInit(T, field_infos[i].name, {}); }, else => unreachable, // Can't be out of bounds } }, .struct_literal => |struct_fields| { if (struct_fields.names.len != 1) { return error.WrongType; } // Fill in the field we found const field_name = struct_fields.names[0]; const field_name_str = field_name.get(self.zoir); const field_val = struct_fields.vals.at(0); const field_index = field_indices.get(field_name_str) orelse return self.failUnexpected(T, "field", node, 0, field_name_str); switch (field_index) { inline 0...field_infos.len - 1 => |i| { if (field_infos[i].type == void) { return self.failNode(field_val, "expected type 'void'"); } else { const value = try self.parseExpr(field_infos[i].type, field_val); return @unionInit(T, field_infos[i].name, value); } }, else => unreachable, // Can't be out of bounds } }, else => return error.WrongType, } } fn parseVector( self: *@This(), T: type, node: Zoir.Node.Index, ) !T { const vector_info = @typeInfo(T).vector; const nodes: Zoir.Node.Index.Range = switch (node.get(self.zoir)) { .array_literal => |nodes| nodes, .empty_literal => .{ .start = node, .len = 0 }, else => return error.WrongType, }; var result: T = undefined; if (nodes.len != vector_info.len) { return self.failNodeFmt( node, "expected {} vector elements; found {}", .{ vector_info.len, nodes.len }, ); } for (0..vector_info.len) |i| { errdefer for (0..i) |j| free(self.gpa, result[j]); result[i] = try self.parseExpr(vector_info.child, nodes.at(@intCast(i))); } return result; } fn failTokenFmt( self: @This(), token: Ast.TokenIndex, offset: u32, comptime fmt: []const u8, args: anytype, ) error{ OutOfMemory, ParseZon } { @branchHint(.cold); return self.failTokenFmtNote(token, offset, fmt, args, null); } fn failTokenFmtNote( self: @This(), token: Ast.TokenIndex, offset: u32, comptime fmt: []const u8, args: anytype, note: ?Error.TypeCheckFailure.Note, ) error{ OutOfMemory, ParseZon } { @branchHint(.cold); comptime assert(args.len > 0); if (self.status) |s| s.type_check = .{ .token = token, .offset = offset, .message = std.fmt.allocPrint(self.gpa, fmt, args) catch |err| { if (note) |n| n.deinit(self.gpa); return err; }, .owned = true, .note = note, }; return error.ParseZon; } fn failNodeFmt( self: @This(), node: Zoir.Node.Index, comptime fmt: []const u8, args: anytype, ) error{ OutOfMemory, ParseZon } { @branchHint(.cold); const token = self.ast.nodeMainToken(node.getAstNode(self.zoir)); return self.failTokenFmt(token, 0, fmt, args); } fn failToken( self: @This(), failure: Error.TypeCheckFailure, ) error{ParseZon} { @branchHint(.cold); if (self.status) |s| s.type_check = failure; return error.ParseZon; } fn failNode( self: @This(), node: Zoir.Node.Index, message: []const u8, ) error{ParseZon} { @branchHint(.cold); const token = self.ast.nodeMainToken(node.getAstNode(self.zoir)); return self.failToken(.{ .token = token, .offset = 0, .message = message, .owned = false, .note = null, }); } fn failCannotRepresent( self: @This(), T: type, node: Zoir.Node.Index, ) error{ OutOfMemory, ParseZon } { @branchHint(.cold); return self.failNodeFmt(node, "type '{s}' cannot represent value", .{@typeName(T)}); } fn failUnexpected( self: @This(), T: type, item_kind: []const u8, node: Zoir.Node.Index, field: ?usize, name: []const u8, ) error{ OutOfMemory, ParseZon } { @branchHint(.cold); const token = if (field) |f| b: { var buf: [2]Ast.Node.Index = undefined; const struct_init = self.ast.fullStructInit(&buf, node.getAstNode(self.zoir)).?; const field_node = struct_init.ast.fields[f]; break :b self.ast.firstToken(field_node) - 2; } else self.ast.nodeMainToken(node.getAstNode(self.zoir)); switch (@typeInfo(T)) { inline .@"struct", .@"union", .@"enum" => |info| { const note: Error.TypeCheckFailure.Note = if (info.fields.len == 0) b: { break :b .{ .token = token, .offset = 0, .msg = "none expected", .owned = false, }; } else b: { const msg = "supported: "; var buf: std.ArrayListUnmanaged(u8) = try .initCapacity(self.gpa, 64); defer buf.deinit(self.gpa); const writer = buf.writer(self.gpa); try writer.writeAll(msg); inline for (info.fields, 0..) |field_info, i| { if (i != 0) try writer.writeAll(", "); try writer.print("'{p_}'", .{std.zig.fmtId(field_info.name)}); } break :b .{ .token = token, .offset = 0, .msg = try buf.toOwnedSlice(self.gpa), .owned = true, }; }; return self.failTokenFmtNote( token, 0, "unexpected {s} '{s}'", .{ item_kind, name }, note, ); }, else => comptime unreachable, } } // Technically we could do this if we were willing to do a deep equal to verify // the value matched, but doing so doesn't seem to support any real use cases // so isn't worth the complexity at the moment. fn failComptimeField( self: @This(), node: Zoir.Node.Index, field: usize, ) error{ OutOfMemory, ParseZon } { @branchHint(.cold); const ast_node = node.getAstNode(self.zoir); var buf: [2]Ast.Node.Index = undefined; const token = if (self.ast.fullStructInit(&buf, ast_node)) |struct_init| b: { const field_node = struct_init.ast.fields[field]; break :b self.ast.firstToken(field_node); } else b: { const array_init = self.ast.fullArrayInit(&buf, ast_node).?; const value_node = array_init.ast.elements[field]; break :b self.ast.firstToken(value_node); }; return self.failToken(.{ .token = token, .offset = 0, .message = "cannot initialize comptime field", .owned = false, .note = null, }); } }; fn intFromFloatExact(T: type, value: anytype) ?T { if (value > std.math.maxInt(T) or value < std.math.minInt(T)) { return null; } if (std.math.isNan(value) or std.math.trunc(value) != value) { return null; } return @intFromFloat(value); } fn canParseType(T: type) bool { comptime return canParseTypeInner(T, &.{}, false); } fn canParseTypeInner( T: type, /// Visited structs and unions, to avoid infinite recursion. /// Tracking more types is unnecessary, and a little complex due to optional nesting. visited: []const type, parent_is_optional: bool, ) bool { return switch (@typeInfo(T)) { .bool, .int, .float, .null, .@"enum", => true, .noreturn, .void, .type, .undefined, .error_union, .error_set, .@"fn", .frame, .@"anyframe", .@"opaque", .comptime_int, .comptime_float, .enum_literal, => false, .pointer => |pointer| switch (pointer.size) { .one => canParseTypeInner(pointer.child, visited, parent_is_optional), .slice => canParseTypeInner(pointer.child, visited, false), .many, .c => false, }, .optional => |optional| if (parent_is_optional) false else canParseTypeInner(optional.child, visited, true), .array => |array| canParseTypeInner(array.child, visited, false), .vector => |vector| canParseTypeInner(vector.child, visited, false), .@"struct" => |@"struct"| { for (visited) |V| if (T == V) return true; const new_visited = visited ++ .{T}; for (@"struct".fields) |field| { if (!field.is_comptime and !canParseTypeInner(field.type, new_visited, false)) { return false; } } return true; }, .@"union" => |@"union"| { for (visited) |V| if (T == V) return true; const new_visited = visited ++ .{T}; for (@"union".fields) |field| { if (field.type != void and !canParseTypeInner(field.type, new_visited, false)) { return false; } } return true; }, }; } test "std.zon parse canParseType" { try std.testing.expect(!comptime canParseType(void)); try std.testing.expect(!comptime canParseType(struct { f: [*]u8 })); try std.testing.expect(!comptime canParseType(struct { error{foo} })); try std.testing.expect(!comptime canParseType(union(enum) { a: void, b: [*c]u8 })); try std.testing.expect(!comptime canParseType(@Vector(0, [*c]u8))); try std.testing.expect(!comptime canParseType(*?[*c]u8)); try std.testing.expect(comptime canParseType(enum(u8) { _ })); try std.testing.expect(comptime canParseType(union { foo: void })); try std.testing.expect(comptime canParseType(union(enum) { foo: void })); try std.testing.expect(!comptime canParseType(comptime_float)); try std.testing.expect(!comptime canParseType(comptime_int)); try std.testing.expect(comptime canParseType(struct { comptime foo: ??u8 = null })); try std.testing.expect(!comptime canParseType(@TypeOf(.foo))); try std.testing.expect(comptime canParseType(?u8)); try std.testing.expect(comptime canParseType(*?*u8)); try std.testing.expect(comptime canParseType(?struct { foo: ?struct { ?union(enum) { a: ?@Vector(0, ?*u8), }, ?struct { f: ?[]?u8, }, }, })); try std.testing.expect(!comptime canParseType(??u8)); try std.testing.expect(!comptime canParseType(?*?u8)); try std.testing.expect(!comptime canParseType(*?*?*u8)); try std.testing.expect(!comptime canParseType(struct { x: comptime_int = 2 })); try std.testing.expect(!comptime canParseType(struct { x: comptime_float = 2 })); try std.testing.expect(comptime canParseType(struct { comptime x: @TypeOf(.foo) = .foo })); try std.testing.expect(!comptime canParseType(struct { comptime_int })); const Recursive = struct { foo: ?*@This() }; try std.testing.expect(comptime canParseType(Recursive)); // Make sure we validate nested optional before we early out due to already having seen // a type recursion! try std.testing.expect(!comptime canParseType(struct { add_to_visited: ?u8, retrieve_from_visited: ??u8, })); } test "std.zon requiresAllocator" { try std.testing.expect(!requiresAllocator(u8)); try std.testing.expect(!requiresAllocator(f32)); try std.testing.expect(!requiresAllocator(enum { foo })); try std.testing.expect(!requiresAllocator(struct { f32 })); try std.testing.expect(!requiresAllocator(struct { x: f32 })); try std.testing.expect(!requiresAllocator([0][]const u8)); try std.testing.expect(!requiresAllocator([2]u8)); try std.testing.expect(!requiresAllocator(union { x: f32, y: f32 })); try std.testing.expect(!requiresAllocator(union(enum) { x: f32, y: f32 })); try std.testing.expect(!requiresAllocator(?f32)); try std.testing.expect(!requiresAllocator(void)); try std.testing.expect(!requiresAllocator(@TypeOf(null))); try std.testing.expect(!requiresAllocator(@Vector(3, u8))); try std.testing.expect(!requiresAllocator(@Vector(0, *const u8))); try std.testing.expect(requiresAllocator([]u8)); try std.testing.expect(requiresAllocator(*struct { u8, u8 })); try std.testing.expect(requiresAllocator([1][]const u8)); try std.testing.expect(requiresAllocator(struct { x: i32, y: []u8 })); try std.testing.expect(requiresAllocator(union { x: i32, y: []u8 })); try std.testing.expect(requiresAllocator(union(enum) { x: i32, y: []u8 })); try std.testing.expect(requiresAllocator(?[]u8)); try std.testing.expect(requiresAllocator(@Vector(3, *const u8))); } test "std.zon ast errors" { const gpa = std.testing.allocator; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(struct {}, gpa, ".{.x = 1 .y = 2}", &status, .{}), ); try std.testing.expectFmt("1:13: error: expected ',' after initializer\n", "{}", .{status}); } test "std.zon comments" { const gpa = std.testing.allocator; try std.testing.expectEqual(@as(u8, 10), fromSlice(u8, gpa, \\// comment \\10 // comment \\// comment , null, .{})); { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(u8, gpa, \\//! comment \\10 // comment \\// comment , &status, .{})); try std.testing.expectFmt( "1:1: error: expected expression, found 'a document comment'\n", "{}", .{status}, ); } } test "std.zon failure/oom formatting" { const gpa = std.testing.allocator; var failing_allocator = std.testing.FailingAllocator.init(gpa, .{ .fail_index = 0, .resize_fail_index = 0, }); var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.OutOfMemory, fromSlice( []const u8, failing_allocator.allocator(), "\"foo\"", &status, .{}, )); try std.testing.expectFmt("", "{}", .{status}); } test "std.zon fromSlice syntax error" { try std.testing.expectError( error.ParseZon, fromSlice(u8, std.testing.allocator, ".{", null, .{}), ); } test "std.zon optional" { const gpa = std.testing.allocator; // Basic usage { const none = try fromSlice(?u32, gpa, "null", null, .{}); try std.testing.expect(none == null); const some = try fromSlice(?u32, gpa, "1", null, .{}); try std.testing.expect(some.? == 1); } // Deep free { const none = try fromSlice(?[]const u8, gpa, "null", null, .{}); try std.testing.expect(none == null); const some = try fromSlice(?[]const u8, gpa, "\"foo\"", null, .{}); defer free(gpa, some); try std.testing.expectEqualStrings("foo", some.?); } } test "std.zon unions" { const gpa = std.testing.allocator; // Unions { const Tagged = union(enum) { x: f32, @"y y": bool, z, @"z z" }; const Untagged = union { x: f32, @"y y": bool, z: void, @"z z": void }; const tagged_x = try fromSlice(Tagged, gpa, ".{.x = 1.5}", null, .{}); try std.testing.expectEqual(Tagged{ .x = 1.5 }, tagged_x); const tagged_y = try fromSlice(Tagged, gpa, ".{.@\"y y\" = true}", null, .{}); try std.testing.expectEqual(Tagged{ .@"y y" = true }, tagged_y); const tagged_z_shorthand = try fromSlice(Tagged, gpa, ".z", null, .{}); try std.testing.expectEqual(@as(Tagged, .z), tagged_z_shorthand); const tagged_zz_shorthand = try fromSlice(Tagged, gpa, ".@\"z z\"", null, .{}); try std.testing.expectEqual(@as(Tagged, .@"z z"), tagged_zz_shorthand); const untagged_x = try fromSlice(Untagged, gpa, ".{.x = 1.5}", null, .{}); try std.testing.expect(untagged_x.x == 1.5); const untagged_y = try fromSlice(Untagged, gpa, ".{.@\"y y\" = true}", null, .{}); try std.testing.expect(untagged_y.@"y y"); } // Deep free { const Union = union(enum) { bar: []const u8, baz: bool }; const noalloc = try fromSlice(Union, gpa, ".{.baz = false}", null, .{}); try std.testing.expectEqual(Union{ .baz = false }, noalloc); const alloc = try fromSlice(Union, gpa, ".{.bar = \"qux\"}", null, .{}); defer free(gpa, alloc); try std.testing.expectEqualDeep(Union{ .bar = "qux" }, alloc); } // Unknown field { const Union = union { x: f32, y: f32 }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Union, gpa, ".{.z=2.5}", &status, .{}), ); try std.testing.expectFmt( \\1:4: error: unexpected field 'z' \\1:4: note: supported: 'x', 'y' \\ , "{}", .{status}, ); } // Explicit void field { const Union = union(enum) { x: void }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Union, gpa, ".{.x=1}", &status, .{}), ); try std.testing.expectFmt("1:6: error: expected type 'void'\n", "{}", .{status}); } // Extra field { const Union = union { x: f32, y: bool }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Union, gpa, ".{.x = 1.5, .y = true}", &status, .{}), ); try std.testing.expectFmt("1:2: error: expected union\n", "{}", .{status}); } // No fields { const Union = union { x: f32, y: bool }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Union, gpa, ".{}", &status, .{}), ); try std.testing.expectFmt("1:2: error: expected union\n", "{}", .{status}); } // Enum literals cannot coerce into untagged unions { const Union = union { x: void }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(Union, gpa, ".x", &status, .{})); try std.testing.expectFmt("1:2: error: expected union\n", "{}", .{status}); } // Unknown field for enum literal coercion { const Union = union(enum) { x: void }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(Union, gpa, ".y", &status, .{})); try std.testing.expectFmt( \\1:2: error: unexpected field 'y' \\1:2: note: supported: 'x' \\ , "{}", .{status}, ); } // Non void field for enum literal coercion { const Union = union(enum) { x: f32 }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(Union, gpa, ".x", &status, .{})); try std.testing.expectFmt("1:2: error: expected union\n", "{}", .{status}); } } test "std.zon structs" { const gpa = std.testing.allocator; // Structs (various sizes tested since they're parsed differently) { const Vec0 = struct {}; const Vec1 = struct { x: f32 }; const Vec2 = struct { x: f32, y: f32 }; const Vec3 = struct { x: f32, y: f32, z: f32 }; const zero = try fromSlice(Vec0, gpa, ".{}", null, .{}); try std.testing.expectEqual(Vec0{}, zero); const one = try fromSlice(Vec1, gpa, ".{.x = 1.2}", null, .{}); try std.testing.expectEqual(Vec1{ .x = 1.2 }, one); const two = try fromSlice(Vec2, gpa, ".{.x = 1.2, .y = 3.4}", null, .{}); try std.testing.expectEqual(Vec2{ .x = 1.2, .y = 3.4 }, two); const three = try fromSlice(Vec3, gpa, ".{.x = 1.2, .y = 3.4, .z = 5.6}", null, .{}); try std.testing.expectEqual(Vec3{ .x = 1.2, .y = 3.4, .z = 5.6 }, three); } // Deep free (structs and arrays) { const Foo = struct { bar: []const u8, baz: []const []const u8 }; const parsed = try fromSlice( Foo, gpa, ".{.bar = \"qux\", .baz = .{\"a\", \"b\"}}", null, .{}, ); defer free(gpa, parsed); try std.testing.expectEqualDeep(Foo{ .bar = "qux", .baz = &.{ "a", "b" } }, parsed); } // Unknown field { const Vec2 = struct { x: f32, y: f32 }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Vec2, gpa, ".{.x=1.5, .z=2.5}", &status, .{}), ); try std.testing.expectFmt( \\1:12: error: unexpected field 'z' \\1:12: note: supported: 'x', 'y' \\ , "{}", .{status}, ); } // Duplicate field { const Vec2 = struct { x: f32, y: f32 }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Vec2, gpa, ".{.x=1.5, .x=2.5, .x=3.5}", &status, .{}), ); try std.testing.expectFmt( \\1:4: error: duplicate struct field name \\1:12: note: duplicate name here \\ , "{}", .{status}); } // Ignore unknown fields { const Vec2 = struct { x: f32, y: f32 = 2.0 }; const parsed = try fromSlice(Vec2, gpa, ".{ .x = 1.0, .z = 3.0 }", null, .{ .ignore_unknown_fields = true, }); try std.testing.expectEqual(Vec2{ .x = 1.0, .y = 2.0 }, parsed); } // Unknown field when struct has no fields (regression test) { const Vec2 = struct {}; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Vec2, gpa, ".{.x=1.5, .z=2.5}", &status, .{}), ); try std.testing.expectFmt( \\1:4: error: unexpected field 'x' \\1:4: note: none expected \\ , "{}", .{status}); } // Missing field { const Vec2 = struct { x: f32, y: f32 }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Vec2, gpa, ".{.x=1.5}", &status, .{}), ); try std.testing.expectFmt("1:2: error: missing required field y\n", "{}", .{status}); } // Default field { const Vec2 = struct { x: f32, y: f32 = 1.5 }; const parsed = try fromSlice(Vec2, gpa, ".{.x = 1.2}", null, .{}); try std.testing.expectEqual(Vec2{ .x = 1.2, .y = 1.5 }, parsed); } // Comptime field { const Vec2 = struct { x: f32, comptime y: f32 = 1.5 }; const parsed = try fromSlice(Vec2, gpa, ".{.x = 1.2}", null, .{}); try std.testing.expectEqual(Vec2{ .x = 1.2, .y = 1.5 }, parsed); } // Comptime field assignment { const Vec2 = struct { x: f32, comptime y: f32 = 1.5 }; var status: Status = .{}; defer status.deinit(gpa); const parsed = fromSlice(Vec2, gpa, ".{.x = 1.2, .y = 1.5}", &status, .{}); try std.testing.expectError(error.ParseZon, parsed); try std.testing.expectFmt( \\1:18: error: cannot initialize comptime field \\ , "{}", .{status}); } // Enum field (regression test, we were previously getting the field name in an // incorrect way that broke for enum values) { const Vec0 = struct { x: enum { x } }; const parsed = try fromSlice(Vec0, gpa, ".{ .x = .x }", null, .{}); try std.testing.expectEqual(Vec0{ .x = .x }, parsed); } // Enum field and struct field with @ { const Vec0 = struct { @"x x": enum { @"x x" } }; const parsed = try fromSlice(Vec0, gpa, ".{ .@\"x x\" = .@\"x x\" }", null, .{}); try std.testing.expectEqual(Vec0{ .@"x x" = .@"x x" }, parsed); } // Type expressions are not allowed { // Structs { var status: Status = .{}; defer status.deinit(gpa); const parsed = fromSlice(struct {}, gpa, "Empty{}", &status, .{}); try std.testing.expectError(error.ParseZon, parsed); try std.testing.expectFmt( \\1:1: error: types are not available in ZON \\1:1: note: replace the type with '.' \\ , "{}", .{status}); } // Arrays { var status: Status = .{}; defer status.deinit(gpa); const parsed = fromSlice([3]u8, gpa, "[3]u8{1, 2, 3}", &status, .{}); try std.testing.expectError(error.ParseZon, parsed); try std.testing.expectFmt( \\1:1: error: types are not available in ZON \\1:1: note: replace the type with '.' \\ , "{}", .{status}); } // Slices { var status: Status = .{}; defer status.deinit(gpa); const parsed = fromSlice([]u8, gpa, "[]u8{1, 2, 3}", &status, .{}); try std.testing.expectError(error.ParseZon, parsed); try std.testing.expectFmt( \\1:1: error: types are not available in ZON \\1:1: note: replace the type with '.' \\ , "{}", .{status}); } // Tuples { var status: Status = .{}; defer status.deinit(gpa); const parsed = fromSlice( struct { u8, u8, u8 }, gpa, "Tuple{1, 2, 3}", &status, .{}, ); try std.testing.expectError(error.ParseZon, parsed); try std.testing.expectFmt( \\1:1: error: types are not available in ZON \\1:1: note: replace the type with '.' \\ , "{}", .{status}); } // Nested { var status: Status = .{}; defer status.deinit(gpa); const parsed = fromSlice(struct {}, gpa, ".{ .x = Tuple{1, 2, 3} }", &status, .{}); try std.testing.expectError(error.ParseZon, parsed); try std.testing.expectFmt( \\1:9: error: types are not available in ZON \\1:9: note: replace the type with '.' \\ , "{}", .{status}); } } } test "std.zon tuples" { const gpa = std.testing.allocator; // Structs (various sizes tested since they're parsed differently) { const Tuple0 = struct {}; const Tuple1 = struct { f32 }; const Tuple2 = struct { f32, bool }; const Tuple3 = struct { f32, bool, u8 }; const zero = try fromSlice(Tuple0, gpa, ".{}", null, .{}); try std.testing.expectEqual(Tuple0{}, zero); const one = try fromSlice(Tuple1, gpa, ".{1.2}", null, .{}); try std.testing.expectEqual(Tuple1{1.2}, one); const two = try fromSlice(Tuple2, gpa, ".{1.2, true}", null, .{}); try std.testing.expectEqual(Tuple2{ 1.2, true }, two); const three = try fromSlice(Tuple3, gpa, ".{1.2, false, 3}", null, .{}); try std.testing.expectEqual(Tuple3{ 1.2, false, 3 }, three); } // Deep free { const Tuple = struct { []const u8, []const u8 }; const parsed = try fromSlice(Tuple, gpa, ".{\"hello\", \"world\"}", null, .{}); defer free(gpa, parsed); try std.testing.expectEqualDeep(Tuple{ "hello", "world" }, parsed); } // Extra field { const Tuple = struct { f32, bool }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Tuple, gpa, ".{0.5, true, 123}", &status, .{}), ); try std.testing.expectFmt("1:14: error: index 2 outside of tuple length 2\n", "{}", .{status}); } // Extra field { const Tuple = struct { f32, bool }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Tuple, gpa, ".{0.5}", &status, .{}), ); try std.testing.expectFmt( "1:2: error: missing tuple field with index 1\n", "{}", .{status}, ); } // Tuple with unexpected field names { const Tuple = struct { f32 }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Tuple, gpa, ".{.foo = 10.0}", &status, .{}), ); try std.testing.expectFmt("1:2: error: expected tuple\n", "{}", .{status}); } // Struct with missing field names { const Struct = struct { foo: f32 }; var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Struct, gpa, ".{10.0}", &status, .{}), ); try std.testing.expectFmt("1:2: error: expected struct\n", "{}", .{status}); } // Comptime field { const Vec2 = struct { f32, comptime f32 = 1.5 }; const parsed = try fromSlice(Vec2, gpa, ".{ 1.2 }", null, .{}); try std.testing.expectEqual(Vec2{ 1.2, 1.5 }, parsed); } // Comptime field assignment { const Vec2 = struct { f32, comptime f32 = 1.5 }; var status: Status = .{}; defer status.deinit(gpa); const parsed = fromSlice(Vec2, gpa, ".{ 1.2, 1.5}", &status, .{}); try std.testing.expectError(error.ParseZon, parsed); try std.testing.expectFmt( \\1:9: error: cannot initialize comptime field \\ , "{}", .{status}); } } // Test sizes 0 to 3 since small sizes get parsed differently test "std.zon arrays and slices" { if (builtin.zig_backend == .stage2_c) return error.SkipZigTest; // https://github.com/ziglang/zig/issues/20881 const gpa = std.testing.allocator; // Literals { // Arrays { const zero = try fromSlice([0]u8, gpa, ".{}", null, .{}); try std.testing.expectEqualSlices(u8, &@as([0]u8, .{}), &zero); const one = try fromSlice([1]u8, gpa, ".{'a'}", null, .{}); try std.testing.expectEqualSlices(u8, &@as([1]u8, .{'a'}), &one); const two = try fromSlice([2]u8, gpa, ".{'a', 'b'}", null, .{}); try std.testing.expectEqualSlices(u8, &@as([2]u8, .{ 'a', 'b' }), &two); const two_comma = try fromSlice([2]u8, gpa, ".{'a', 'b',}", null, .{}); try std.testing.expectEqualSlices(u8, &@as([2]u8, .{ 'a', 'b' }), &two_comma); const three = try fromSlice([3]u8, gpa, ".{'a', 'b', 'c'}", null, .{}); try std.testing.expectEqualSlices(u8, &.{ 'a', 'b', 'c' }, &three); const sentinel = try fromSlice([3:'z']u8, gpa, ".{'a', 'b', 'c'}", null, .{}); const expected_sentinel: [3:'z']u8 = .{ 'a', 'b', 'c' }; try std.testing.expectEqualSlices(u8, &expected_sentinel, &sentinel); } // Slice literals { const zero = try fromSlice([]const u8, gpa, ".{}", null, .{}); defer free(gpa, zero); try std.testing.expectEqualSlices(u8, @as([]const u8, &.{}), zero); const one = try fromSlice([]u8, gpa, ".{'a'}", null, .{}); defer free(gpa, one); try std.testing.expectEqualSlices(u8, &.{'a'}, one); const two = try fromSlice([]const u8, gpa, ".{'a', 'b'}", null, .{}); defer free(gpa, two); try std.testing.expectEqualSlices(u8, &.{ 'a', 'b' }, two); const two_comma = try fromSlice([]const u8, gpa, ".{'a', 'b',}", null, .{}); defer free(gpa, two_comma); try std.testing.expectEqualSlices(u8, &.{ 'a', 'b' }, two_comma); const three = try fromSlice([]u8, gpa, ".{'a', 'b', 'c'}", null, .{}); defer free(gpa, three); try std.testing.expectEqualSlices(u8, &.{ 'a', 'b', 'c' }, three); const sentinel = try fromSlice([:'z']const u8, gpa, ".{'a', 'b', 'c'}", null, .{}); defer free(gpa, sentinel); const expected_sentinel: [:'z']const u8 = &.{ 'a', 'b', 'c' }; try std.testing.expectEqualSlices(u8, expected_sentinel, sentinel); } } // Deep free { // Arrays { const parsed = try fromSlice([1][]const u8, gpa, ".{\"abc\"}", null, .{}); defer free(gpa, parsed); const expected: [1][]const u8 = .{"abc"}; try std.testing.expectEqualDeep(expected, parsed); } // Slice literals { const parsed = try fromSlice([]const []const u8, gpa, ".{\"abc\"}", null, .{}); defer free(gpa, parsed); const expected: []const []const u8 = &.{"abc"}; try std.testing.expectEqualDeep(expected, parsed); } } // Sentinels and alignment { // Arrays { const sentinel = try fromSlice([1:2]u8, gpa, ".{1}", null, .{}); try std.testing.expectEqual(@as(usize, 1), sentinel.len); try std.testing.expectEqual(@as(u8, 1), sentinel[0]); try std.testing.expectEqual(@as(u8, 2), sentinel[1]); } // Slice literals { const sentinel = try fromSlice([:2]align(4) u8, gpa, ".{1}", null, .{}); defer free(gpa, sentinel); try std.testing.expectEqual(@as(usize, 1), sentinel.len); try std.testing.expectEqual(@as(u8, 1), sentinel[0]); try std.testing.expectEqual(@as(u8, 2), sentinel[1]); } } // Expect 0 find 3 { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([0]u8, gpa, ".{'a', 'b', 'c'}", &status, .{}), ); try std.testing.expectFmt( "1:3: error: index 0 outside of array of length 0\n", "{}", .{status}, ); } // Expect 1 find 2 { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([1]u8, gpa, ".{'a', 'b'}", &status, .{}), ); try std.testing.expectFmt( "1:8: error: index 1 outside of array of length 1\n", "{}", .{status}, ); } // Expect 2 find 1 { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([2]u8, gpa, ".{'a'}", &status, .{}), ); try std.testing.expectFmt( "1:2: error: expected 2 array elements; found 1\n", "{}", .{status}, ); } // Expect 3 find 0 { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([3]u8, gpa, ".{}", &status, .{}), ); try std.testing.expectFmt( "1:2: error: expected 3 array elements; found 0\n", "{}", .{status}, ); } // Wrong inner type { // Array { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([3]bool, gpa, ".{'a', 'b', 'c'}", &status, .{}), ); try std.testing.expectFmt("1:3: error: expected type 'bool'\n", "{}", .{status}); } // Slice { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([]bool, gpa, ".{'a', 'b', 'c'}", &status, .{}), ); try std.testing.expectFmt("1:3: error: expected type 'bool'\n", "{}", .{status}); } } // Complete wrong type { // Array { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([3]u8, gpa, "'a'", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected array\n", "{}", .{status}); } // Slice { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([]u8, gpa, "'a'", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected array\n", "{}", .{status}); } } // Address of is not allowed (indirection for slices in ZON is implicit) { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([]u8, gpa, " &.{'a', 'b', 'c'}", &status, .{}), ); try std.testing.expectFmt( "1:3: error: pointers are not available in ZON\n", "{}", .{status}, ); } } test "std.zon string literal" { const gpa = std.testing.allocator; // Basic string literal { const parsed = try fromSlice([]const u8, gpa, "\"abc\"", null, .{}); defer free(gpa, parsed); try std.testing.expectEqualStrings(@as([]const u8, "abc"), parsed); } // String literal with escape characters { const parsed = try fromSlice([]const u8, gpa, "\"ab\\nc\"", null, .{}); defer free(gpa, parsed); try std.testing.expectEqualStrings(@as([]const u8, "ab\nc"), parsed); } // String literal with embedded null { const parsed = try fromSlice([]const u8, gpa, "\"ab\\x00c\"", null, .{}); defer free(gpa, parsed); try std.testing.expectEqualStrings(@as([]const u8, "ab\x00c"), parsed); } // Passing string literal to a mutable slice { { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([]u8, gpa, "\"abcd\"", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected array\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([]u8, gpa, "\\\\abcd", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected array\n", "{}", .{status}); } } // Passing string literal to a array { { var ast = try std.zig.Ast.parse(gpa, "\"abcd\"", .zon); defer ast.deinit(gpa); var zoir = try ZonGen.generate(gpa, ast, .{ .parse_str_lits = false }); defer zoir.deinit(gpa); var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([4:0]u8, gpa, "\"abcd\"", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected array\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([4:0]u8, gpa, "\\\\abcd", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected array\n", "{}", .{status}); } } // Zero terminated slices { { const parsed: [:0]const u8 = try fromSlice( [:0]const u8, gpa, "\"abc\"", null, .{}, ); defer free(gpa, parsed); try std.testing.expectEqualStrings("abc", parsed); try std.testing.expectEqual(@as(u8, 0), parsed[3]); } { const parsed: [:0]const u8 = try fromSlice( [:0]const u8, gpa, "\\\\abc", null, .{}, ); defer free(gpa, parsed); try std.testing.expectEqualStrings("abc", parsed); try std.testing.expectEqual(@as(u8, 0), parsed[3]); } } // Other value terminated slices { { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([:1]const u8, gpa, "\"foo\"", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected array\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([:1]const u8, gpa, "\\\\foo", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected array\n", "{}", .{status}); } } // Expecting string literal, getting something else { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([]const u8, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected string\n", "{}", .{status}); } // Expecting string literal, getting an incompatible tuple { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([]const u8, gpa, ".{false}", &status, .{}), ); try std.testing.expectFmt("1:3: error: expected type 'u8'\n", "{}", .{status}); } // Invalid string literal { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([]const i8, gpa, "\"\\a\"", &status, .{}), ); try std.testing.expectFmt("1:3: error: invalid escape character: 'a'\n", "{}", .{status}); } // Slice wrong child type { { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([]const i8, gpa, "\"a\"", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected array\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([]const i8, gpa, "\\\\a", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected array\n", "{}", .{status}); } } // Bad alignment { { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([]align(2) const u8, gpa, "\"abc\"", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected array\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice([]align(2) const u8, gpa, "\\\\abc", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected array\n", "{}", .{status}); } } // Multi line strings inline for (.{ []const u8, [:0]const u8 }) |String| { // Nested { const S = struct { message: String, message2: String, message3: String, }; const parsed = try fromSlice(S, gpa, \\.{ \\ .message = \\ \\hello, world! \\ \\ \\this is a multiline string! \\ \\ \\ \\... \\ \\ , \\ .message2 = \\ \\this too...sort of. \\ , \\ .message3 = \\ \\ \\ \\and this. \\} , null, .{}); defer free(gpa, parsed); try std.testing.expectEqualStrings( "hello, world!\nthis is a multiline string!\n\n...", parsed.message, ); try std.testing.expectEqualStrings("this too...sort of.", parsed.message2); try std.testing.expectEqualStrings("\nand this.", parsed.message3); } } } test "std.zon enum literals" { const gpa = std.testing.allocator; const Enum = enum { foo, bar, baz, @"ab\nc", }; // Tags that exist try std.testing.expectEqual(Enum.foo, try fromSlice(Enum, gpa, ".foo", null, .{})); try std.testing.expectEqual(Enum.bar, try fromSlice(Enum, gpa, ".bar", null, .{})); try std.testing.expectEqual(Enum.baz, try fromSlice(Enum, gpa, ".baz", null, .{})); try std.testing.expectEqual( Enum.@"ab\nc", try fromSlice(Enum, gpa, ".@\"ab\\nc\"", null, .{}), ); // Bad tag { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Enum, gpa, ".qux", &status, .{}), ); try std.testing.expectFmt( \\1:2: error: unexpected enum literal 'qux' \\1:2: note: supported: 'foo', 'bar', 'baz', '@"ab\nc"' \\ , "{}", .{status}, ); } // Bad tag that's too long for parser { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Enum, gpa, ".@\"foobarbaz\"", &status, .{}), ); try std.testing.expectFmt( \\1:2: error: unexpected enum literal 'foobarbaz' \\1:2: note: supported: 'foo', 'bar', 'baz', '@"ab\nc"' \\ , "{}", .{status}, ); } // Bad type { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Enum, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected enum literal\n", "{}", .{status}); } // Test embedded nulls in an identifier { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(Enum, gpa, ".@\"\\x00\"", &status, .{}), ); try std.testing.expectFmt( "1:2: error: identifier cannot contain null bytes\n", "{}", .{status}, ); } } test "std.zon parse bool" { const gpa = std.testing.allocator; // Correct floats try std.testing.expectEqual(true, try fromSlice(bool, gpa, "true", null, .{})); try std.testing.expectEqual(false, try fromSlice(bool, gpa, "false", null, .{})); // Errors { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(bool, gpa, " foo", &status, .{}), ); try std.testing.expectFmt( \\1:2: error: invalid expression \\1:2: note: ZON allows identifiers 'true', 'false', 'null', 'inf', and 'nan' \\1:2: note: precede identifier with '.' for an enum literal \\ , "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(bool, gpa, "123", &status, .{})); try std.testing.expectFmt("1:1: error: expected type 'bool'\n", "{}", .{status}); } } test "std.zon intFromFloatExact" { // Valid conversions try std.testing.expectEqual(@as(u8, 10), intFromFloatExact(u8, @as(f32, 10.0)).?); try std.testing.expectEqual(@as(i8, -123), intFromFloatExact(i8, @as(f64, @as(f64, -123.0))).?); try std.testing.expectEqual(@as(i16, 45), intFromFloatExact(i16, @as(f128, @as(f128, 45.0))).?); // Out of range try std.testing.expectEqual(@as(?u4, null), intFromFloatExact(u4, @as(f32, 16.0))); try std.testing.expectEqual(@as(?i4, null), intFromFloatExact(i4, @as(f64, -17.0))); try std.testing.expectEqual(@as(?u8, null), intFromFloatExact(u8, @as(f128, -2.0))); // Not a whole number try std.testing.expectEqual(@as(?u8, null), intFromFloatExact(u8, @as(f32, 0.5))); try std.testing.expectEqual(@as(?i8, null), intFromFloatExact(i8, @as(f64, 0.01))); // Infinity and NaN try std.testing.expectEqual(@as(?u8, null), intFromFloatExact(u8, std.math.inf(f32))); try std.testing.expectEqual(@as(?u8, null), intFromFloatExact(u8, -std.math.inf(f32))); try std.testing.expectEqual(@as(?u8, null), intFromFloatExact(u8, std.math.nan(f32))); } test "std.zon parse int" { const gpa = std.testing.allocator; // Test various numbers and types try std.testing.expectEqual(@as(u8, 10), try fromSlice(u8, gpa, "10", null, .{})); try std.testing.expectEqual(@as(i16, 24), try fromSlice(i16, gpa, "24", null, .{})); try std.testing.expectEqual(@as(i14, -4), try fromSlice(i14, gpa, "-4", null, .{})); try std.testing.expectEqual(@as(i32, -123), try fromSlice(i32, gpa, "-123", null, .{})); // Test limits try std.testing.expectEqual(@as(i8, 127), try fromSlice(i8, gpa, "127", null, .{})); try std.testing.expectEqual(@as(i8, -128), try fromSlice(i8, gpa, "-128", null, .{})); // Test characters try std.testing.expectEqual(@as(u8, 'a'), try fromSlice(u8, gpa, "'a'", null, .{})); try std.testing.expectEqual(@as(u8, 'z'), try fromSlice(u8, gpa, "'z'", null, .{})); // Test big integers try std.testing.expectEqual( @as(u65, 36893488147419103231), try fromSlice(u65, gpa, "36893488147419103231", null, .{}), ); try std.testing.expectEqual( @as(u65, 36893488147419103231), try fromSlice(u65, gpa, "368934_881_474191032_31", null, .{}), ); // Test big integer limits try std.testing.expectEqual( @as(i66, 36893488147419103231), try fromSlice(i66, gpa, "36893488147419103231", null, .{}), ); try std.testing.expectEqual( @as(i66, -36893488147419103232), try fromSlice(i66, gpa, "-36893488147419103232", null, .{}), ); { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice( i66, gpa, "36893488147419103232", &status, .{}, )); try std.testing.expectFmt( "1:1: error: type 'i66' cannot represent value\n", "{}", .{status}, ); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice( i66, gpa, "-36893488147419103233", &status, .{}, )); try std.testing.expectFmt( "1:1: error: type 'i66' cannot represent value\n", "{}", .{status}, ); } // Test parsing whole number floats as integers try std.testing.expectEqual(@as(i8, -1), try fromSlice(i8, gpa, "-1.0", null, .{})); try std.testing.expectEqual(@as(i8, 123), try fromSlice(i8, gpa, "123.0", null, .{})); // Test non-decimal integers try std.testing.expectEqual(@as(i16, 0xff), try fromSlice(i16, gpa, "0xff", null, .{})); try std.testing.expectEqual(@as(i16, -0xff), try fromSlice(i16, gpa, "-0xff", null, .{})); try std.testing.expectEqual(@as(i16, 0o77), try fromSlice(i16, gpa, "0o77", null, .{})); try std.testing.expectEqual(@as(i16, -0o77), try fromSlice(i16, gpa, "-0o77", null, .{})); try std.testing.expectEqual(@as(i16, 0b11), try fromSlice(i16, gpa, "0b11", null, .{})); try std.testing.expectEqual(@as(i16, -0b11), try fromSlice(i16, gpa, "-0b11", null, .{})); // Test non-decimal big integers try std.testing.expectEqual(@as(u65, 0x1ffffffffffffffff), try fromSlice( u65, gpa, "0x1ffffffffffffffff", null, .{}, )); try std.testing.expectEqual(@as(i66, 0x1ffffffffffffffff), try fromSlice( i66, gpa, "0x1ffffffffffffffff", null, .{}, )); try std.testing.expectEqual(@as(i66, -0x1ffffffffffffffff), try fromSlice( i66, gpa, "-0x1ffffffffffffffff", null, .{}, )); try std.testing.expectEqual(@as(u65, 0x1ffffffffffffffff), try fromSlice( u65, gpa, "0o3777777777777777777777", null, .{}, )); try std.testing.expectEqual(@as(i66, 0x1ffffffffffffffff), try fromSlice( i66, gpa, "0o3777777777777777777777", null, .{}, )); try std.testing.expectEqual(@as(i66, -0x1ffffffffffffffff), try fromSlice( i66, gpa, "-0o3777777777777777777777", null, .{}, )); try std.testing.expectEqual(@as(u65, 0x1ffffffffffffffff), try fromSlice( u65, gpa, "0b11111111111111111111111111111111111111111111111111111111111111111", null, .{}, )); try std.testing.expectEqual(@as(i66, 0x1ffffffffffffffff), try fromSlice( i66, gpa, "0b11111111111111111111111111111111111111111111111111111111111111111", null, .{}, )); try std.testing.expectEqual(@as(i66, -0x1ffffffffffffffff), try fromSlice( i66, gpa, "-0b11111111111111111111111111111111111111111111111111111111111111111", null, .{}, )); // Number with invalid character in the middle { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(u8, gpa, "32a32", &status, .{})); try std.testing.expectFmt( "1:3: error: invalid digit 'a' for decimal base\n", "{}", .{status}, ); } // Failing to parse as int { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(u8, gpa, "true", &status, .{})); try std.testing.expectFmt("1:1: error: expected type 'u8'\n", "{}", .{status}); } // Failing because an int is out of range { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(u8, gpa, "256", &status, .{})); try std.testing.expectFmt( "1:1: error: type 'u8' cannot represent value\n", "{}", .{status}, ); } // Failing because a negative int is out of range { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(i8, gpa, "-129", &status, .{})); try std.testing.expectFmt( "1:1: error: type 'i8' cannot represent value\n", "{}", .{status}, ); } // Failing because an unsigned int is negative { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(u8, gpa, "-1", &status, .{})); try std.testing.expectFmt( "1:1: error: type 'u8' cannot represent value\n", "{}", .{status}, ); } // Failing because a float is non-whole { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(u8, gpa, "1.5", &status, .{})); try std.testing.expectFmt( "1:1: error: type 'u8' cannot represent value\n", "{}", .{status}, ); } // Failing because a float is negative { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(u8, gpa, "-1.0", &status, .{})); try std.testing.expectFmt( "1:1: error: type 'u8' cannot represent value\n", "{}", .{status}, ); } // Negative integer zero { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(i8, gpa, "-0", &status, .{})); try std.testing.expectFmt( \\1:2: error: integer literal '-0' is ambiguous \\1:2: note: use '0' for an integer zero \\1:2: note: use '-0.0' for a floating-point signed zero \\ , "{}", .{status}); } // Negative integer zero casted to float { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(f32, gpa, "-0", &status, .{})); try std.testing.expectFmt( \\1:2: error: integer literal '-0' is ambiguous \\1:2: note: use '0' for an integer zero \\1:2: note: use '-0.0' for a floating-point signed zero \\ , "{}", .{status}); } // Negative float 0 is allowed try std.testing.expect( std.math.isNegativeZero(try fromSlice(f32, gpa, "-0.0", null, .{})), ); try std.testing.expect(std.math.isPositiveZero(try fromSlice(f32, gpa, "0.0", null, .{}))); // Double negation is not allowed { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(i8, gpa, "--2", &status, .{})); try std.testing.expectFmt( "1:1: error: expected number or 'inf' after '-'\n", "{}", .{status}, ); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(f32, gpa, "--2.0", &status, .{}), ); try std.testing.expectFmt( "1:1: error: expected number or 'inf' after '-'\n", "{}", .{status}, ); } // Invalid int literal { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(u8, gpa, "0xg", &status, .{})); try std.testing.expectFmt("1:3: error: invalid digit 'g' for hex base\n", "{}", .{status}); } // Notes on invalid int literal { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(u8, gpa, "0123", &status, .{})); try std.testing.expectFmt( \\1:1: error: number '0123' has leading zero \\1:1: note: use '0o' prefix for octal literals \\ , "{}", .{status}); } } test "std.zon negative char" { const gpa = std.testing.allocator; { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(f32, gpa, "-'a'", &status, .{})); try std.testing.expectFmt( "1:1: error: expected number or 'inf' after '-'\n", "{}", .{status}, ); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(i16, gpa, "-'a'", &status, .{})); try std.testing.expectFmt( "1:1: error: expected number or 'inf' after '-'\n", "{}", .{status}, ); } } test "std.zon parse float" { const gpa = std.testing.allocator; // Test decimals try std.testing.expectEqual(@as(f16, 0.5), try fromSlice(f16, gpa, "0.5", null, .{})); try std.testing.expectEqual( @as(f32, 123.456), try fromSlice(f32, gpa, "123.456", null, .{}), ); try std.testing.expectEqual( @as(f64, -123.456), try fromSlice(f64, gpa, "-123.456", null, .{}), ); try std.testing.expectEqual(@as(f128, 42.5), try fromSlice(f128, gpa, "42.5", null, .{})); // Test whole numbers with and without decimals try std.testing.expectEqual(@as(f16, 5.0), try fromSlice(f16, gpa, "5.0", null, .{})); try std.testing.expectEqual(@as(f16, 5.0), try fromSlice(f16, gpa, "5", null, .{})); try std.testing.expectEqual(@as(f32, -102), try fromSlice(f32, gpa, "-102.0", null, .{})); try std.testing.expectEqual(@as(f32, -102), try fromSlice(f32, gpa, "-102", null, .{})); // Test characters and negated characters try std.testing.expectEqual(@as(f32, 'a'), try fromSlice(f32, gpa, "'a'", null, .{})); try std.testing.expectEqual(@as(f32, 'z'), try fromSlice(f32, gpa, "'z'", null, .{})); // Test big integers try std.testing.expectEqual( @as(f32, 36893488147419103231), try fromSlice(f32, gpa, "36893488147419103231", null, .{}), ); try std.testing.expectEqual( @as(f32, -36893488147419103231), try fromSlice(f32, gpa, "-36893488147419103231", null, .{}), ); try std.testing.expectEqual(@as(f128, 0x1ffffffffffffffff), try fromSlice( f128, gpa, "0x1ffffffffffffffff", null, .{}, )); try std.testing.expectEqual(@as(f32, 0x1ffffffffffffffff), try fromSlice( f32, gpa, "0x1ffffffffffffffff", null, .{}, )); // Exponents, underscores try std.testing.expectEqual( @as(f32, 123.0E+77), try fromSlice(f32, gpa, "12_3.0E+77", null, .{}), ); // Hexadecimal try std.testing.expectEqual( @as(f32, 0x103.70p-5), try fromSlice(f32, gpa, "0x103.70p-5", null, .{}), ); try std.testing.expectEqual( @as(f32, -0x103.70), try fromSlice(f32, gpa, "-0x103.70", null, .{}), ); try std.testing.expectEqual( @as(f32, 0x1234_5678.9ABC_CDEFp-10), try fromSlice(f32, gpa, "0x1234_5678.9ABC_CDEFp-10", null, .{}), ); // inf, nan try std.testing.expect(std.math.isPositiveInf(try fromSlice(f32, gpa, "inf", null, .{}))); try std.testing.expect(std.math.isNegativeInf(try fromSlice(f32, gpa, "-inf", null, .{}))); try std.testing.expect(std.math.isNan(try fromSlice(f32, gpa, "nan", null, .{}))); // Negative nan not allowed { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(f32, gpa, "-nan", &status, .{})); try std.testing.expectFmt( "1:1: error: expected number or 'inf' after '-'\n", "{}", .{status}, ); } // nan as int not allowed { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(i8, gpa, "nan", &status, .{})); try std.testing.expectFmt("1:1: error: expected type 'i8'\n", "{}", .{status}); } // nan as int not allowed { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(i8, gpa, "nan", &status, .{})); try std.testing.expectFmt("1:1: error: expected type 'i8'\n", "{}", .{status}); } // inf as int not allowed { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(i8, gpa, "inf", &status, .{})); try std.testing.expectFmt("1:1: error: expected type 'i8'\n", "{}", .{status}); } // -inf as int not allowed { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(i8, gpa, "-inf", &status, .{})); try std.testing.expectFmt("1:1: error: expected type 'i8'\n", "{}", .{status}); } // Bad identifier as float { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(f32, gpa, "foo", &status, .{})); try std.testing.expectFmt( \\1:1: error: invalid expression \\1:1: note: ZON allows identifiers 'true', 'false', 'null', 'inf', and 'nan' \\1:1: note: precede identifier with '.' for an enum literal \\ , "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError(error.ParseZon, fromSlice(f32, gpa, "-foo", &status, .{})); try std.testing.expectFmt( "1:1: error: expected number or 'inf' after '-'\n", "{}", .{status}, ); } // Non float as float { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(f32, gpa, "\"foo\"", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected type 'f32'\n", "{}", .{status}); } } test "std.zon free on error" { // Test freeing partially allocated structs { const Struct = struct { x: []const u8, y: []const u8, z: bool, }; try std.testing.expectError(error.ParseZon, fromSlice(Struct, std.testing.allocator, \\.{ \\ .x = "hello", \\ .y = "world", \\ .z = "fail", \\} , null, .{})); } // Test freeing partially allocated tuples { const Struct = struct { []const u8, []const u8, bool, }; try std.testing.expectError(error.ParseZon, fromSlice(Struct, std.testing.allocator, \\.{ \\ "hello", \\ "world", \\ "fail", \\} , null, .{})); } // Test freeing structs with missing fields { const Struct = struct { x: []const u8, y: bool, }; try std.testing.expectError(error.ParseZon, fromSlice(Struct, std.testing.allocator, \\.{ \\ .x = "hello", \\} , null, .{})); } // Test freeing partially allocated arrays { try std.testing.expectError(error.ParseZon, fromSlice( [3][]const u8, std.testing.allocator, \\.{ \\ "hello", \\ false, \\ false, \\} , null, .{}, )); } // Test freeing partially allocated slices { try std.testing.expectError(error.ParseZon, fromSlice( [][]const u8, std.testing.allocator, \\.{ \\ "hello", \\ "world", \\ false, \\} , null, .{}, )); } // We can parse types that can't be freed, as long as they contain no allocations, e.g. untagged // unions. try std.testing.expectEqual( @as(f32, 1.5), (try fromSlice(union { x: f32 }, std.testing.allocator, ".{ .x = 1.5 }", null, .{})).x, ); // We can also parse types that can't be freed if it's impossible for an error to occur after // the allocation, as is the case here. { const result = try fromSlice( union { x: []const u8 }, std.testing.allocator, ".{ .x = \"foo\" }", null, .{}, ); defer free(std.testing.allocator, result.x); try std.testing.expectEqualStrings("foo", result.x); } // However, if it's possible we could get an error requiring we free the value, but the value // cannot be freed (e.g. untagged unions) then we need to turn off `free_on_error` for it to // compile. { const S = struct { union { x: []const u8 }, bool, }; const result = try fromSlice( S, std.testing.allocator, ".{ .{ .x = \"foo\" }, true }", null, .{ .free_on_error = false }, ); defer free(std.testing.allocator, result[0].x); try std.testing.expectEqualStrings("foo", result[0].x); try std.testing.expect(result[1]); } // Again but for structs. { const S = struct { a: union { x: []const u8 }, b: bool, }; const result = try fromSlice( S, std.testing.allocator, ".{ .a = .{ .x = \"foo\" }, .b = true }", null, .{ .free_on_error = false, }, ); defer free(std.testing.allocator, result.a.x); try std.testing.expectEqualStrings("foo", result.a.x); try std.testing.expect(result.b); } // Again but for arrays. { const S = [2]union { x: []const u8 }; const result = try fromSlice( S, std.testing.allocator, ".{ .{ .x = \"foo\" }, .{ .x = \"bar\" } }", null, .{ .free_on_error = false, }, ); defer free(std.testing.allocator, result[0].x); defer free(std.testing.allocator, result[1].x); try std.testing.expectEqualStrings("foo", result[0].x); try std.testing.expectEqualStrings("bar", result[1].x); } // Again but for slices. { const S = []union { x: []const u8 }; const result = try fromSlice( S, std.testing.allocator, ".{ .{ .x = \"foo\" }, .{ .x = \"bar\" } }", null, .{ .free_on_error = false, }, ); defer std.testing.allocator.free(result); defer free(std.testing.allocator, result[0].x); defer free(std.testing.allocator, result[1].x); try std.testing.expectEqualStrings("foo", result[0].x); try std.testing.expectEqualStrings("bar", result[1].x); } } test "std.zon vector" { if (builtin.zig_backend == .stage2_c) return error.SkipZigTest; // https://github.com/ziglang/zig/issues/15330 if (builtin.zig_backend == .stage2_x86_64) return error.SkipZigTest; // https://github.com/ziglang/zig/issues/15329 const gpa = std.testing.allocator; // Passing cases try std.testing.expectEqual( @Vector(0, bool){}, try fromSlice(@Vector(0, bool), gpa, ".{}", null, .{}), ); try std.testing.expectEqual( @Vector(3, bool){ true, false, true }, try fromSlice(@Vector(3, bool), gpa, ".{true, false, true}", null, .{}), ); try std.testing.expectEqual( @Vector(0, f32){}, try fromSlice(@Vector(0, f32), gpa, ".{}", null, .{}), ); try std.testing.expectEqual( @Vector(3, f32){ 1.5, 2.5, 3.5 }, try fromSlice(@Vector(3, f32), gpa, ".{1.5, 2.5, 3.5}", null, .{}), ); try std.testing.expectEqual( @Vector(0, u8){}, try fromSlice(@Vector(0, u8), gpa, ".{}", null, .{}), ); try std.testing.expectEqual( @Vector(3, u8){ 2, 4, 6 }, try fromSlice(@Vector(3, u8), gpa, ".{2, 4, 6}", null, .{}), ); { try std.testing.expectEqual( @Vector(0, *const u8){}, try fromSlice(@Vector(0, *const u8), gpa, ".{}", null, .{}), ); const pointers = try fromSlice(@Vector(3, *const u8), gpa, ".{2, 4, 6}", null, .{}); defer free(gpa, pointers); try std.testing.expectEqualDeep(@Vector(3, *const u8){ &2, &4, &6 }, pointers); } { try std.testing.expectEqual( @Vector(0, ?*const u8){}, try fromSlice(@Vector(0, ?*const u8), gpa, ".{}", null, .{}), ); const pointers = try fromSlice(@Vector(3, ?*const u8), gpa, ".{2, null, 6}", null, .{}); defer free(gpa, pointers); try std.testing.expectEqualDeep(@Vector(3, ?*const u8){ &2, null, &6 }, pointers); } // Too few fields { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(@Vector(2, f32), gpa, ".{0.5}", &status, .{}), ); try std.testing.expectFmt( "1:2: error: expected 2 vector elements; found 1\n", "{}", .{status}, ); } // Too many fields { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(@Vector(2, f32), gpa, ".{0.5, 1.5, 2.5}", &status, .{}), ); try std.testing.expectFmt( "1:2: error: expected 2 vector elements; found 3\n", "{}", .{status}, ); } // Wrong type fields { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(@Vector(3, f32), gpa, ".{0.5, true, 2.5}", &status, .{}), ); try std.testing.expectFmt( "1:8: error: expected type 'f32'\n", "{}", .{status}, ); } // Wrong type { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(@Vector(3, u8), gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected type '@Vector(3, u8)'\n", "{}", .{status}); } // Elements should get freed on error { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(@Vector(3, *u8), gpa, ".{1, true, 3}", &status, .{}), ); try std.testing.expectFmt("1:6: error: expected type 'u8'\n", "{}", .{status}); } } test "std.zon add pointers" { const gpa = std.testing.allocator; // Primitive with varying levels of pointers { const result = try fromSlice(*u32, gpa, "10", null, .{}); defer free(gpa, result); try std.testing.expectEqual(@as(u32, 10), result.*); } { const result = try fromSlice(**u32, gpa, "10", null, .{}); defer free(gpa, result); try std.testing.expectEqual(@as(u32, 10), result.*.*); } { const result = try fromSlice(***u32, gpa, "10", null, .{}); defer free(gpa, result); try std.testing.expectEqual(@as(u32, 10), result.*.*.*); } // Primitive optional with varying levels of pointers { const some = try fromSlice(?*u32, gpa, "10", null, .{}); defer free(gpa, some); try std.testing.expectEqual(@as(u32, 10), some.?.*); const none = try fromSlice(?*u32, gpa, "null", null, .{}); defer free(gpa, none); try std.testing.expectEqual(null, none); } { const some = try fromSlice(*?u32, gpa, "10", null, .{}); defer free(gpa, some); try std.testing.expectEqual(@as(u32, 10), some.*.?); const none = try fromSlice(*?u32, gpa, "null", null, .{}); defer free(gpa, none); try std.testing.expectEqual(null, none.*); } { const some = try fromSlice(?**u32, gpa, "10", null, .{}); defer free(gpa, some); try std.testing.expectEqual(@as(u32, 10), some.?.*.*); const none = try fromSlice(?**u32, gpa, "null", null, .{}); defer free(gpa, none); try std.testing.expectEqual(null, none); } { const some = try fromSlice(*?*u32, gpa, "10", null, .{}); defer free(gpa, some); try std.testing.expectEqual(@as(u32, 10), some.*.?.*); const none = try fromSlice(*?*u32, gpa, "null", null, .{}); defer free(gpa, none); try std.testing.expectEqual(null, none.*); } { const some = try fromSlice(**?u32, gpa, "10", null, .{}); defer free(gpa, some); try std.testing.expectEqual(@as(u32, 10), some.*.*.?); const none = try fromSlice(**?u32, gpa, "null", null, .{}); defer free(gpa, none); try std.testing.expectEqual(null, none.*.*); } // Pointer to an array { const result = try fromSlice(*[3]u8, gpa, ".{ 1, 2, 3 }", null, .{}); defer free(gpa, result); try std.testing.expectEqual([3]u8{ 1, 2, 3 }, result.*); } // A complicated type with nested internal pointers and string allocations { const Inner = struct { f1: *const ?*const []const u8, f2: *const ?*const []const u8, }; const Outer = struct { f1: *const ?*const Inner, f2: *const ?*const Inner, }; const expected: Outer = .{ .f1 = &&.{ .f1 = &null, .f2 = &&"foo", }, .f2 = &null, }; const found = try fromSlice(?*Outer, gpa, \\.{ \\ .f1 = .{ \\ .f1 = null, \\ .f2 = "foo", \\ }, \\ .f2 = null, \\} , null, .{}); defer free(gpa, found); try std.testing.expectEqualDeep(expected, found.?.*); } // Test that optional types are flattened correctly in errors { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(*const ?*const u8, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected type '?u8'\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(*const ?*const f32, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected type '?f32'\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(*const ?*const @Vector(3, u8), gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected type '?@Vector(3, u8)'\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(*const ?*const bool, gpa, "10", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected type '?bool'\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(*const ?*const struct { a: i32 }, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected optional struct\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(*const ?*const struct { i32 }, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected optional tuple\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(*const ?*const union { x: void }, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected optional union\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(*const ?*const [3]u8, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected optional array\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(?[3]u8, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected optional array\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(*const ?*const []u8, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected optional array\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(?[]u8, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected optional array\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(*const ?*const []const u8, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected optional string\n", "{}", .{status}); } { var status: Status = .{}; defer status.deinit(gpa); try std.testing.expectError( error.ParseZon, fromSlice(*const ?*const enum { foo }, gpa, "true", &status, .{}), ); try std.testing.expectFmt("1:1: error: expected optional enum literal\n", "{}", .{status}); } }