struct Futex [src]
Alias for std.Thread.Futex
A mechanism used to block (wait) and unblock (wake) threads using a
32bit memory address as hints.
Blocking a thread is acknowledged only if the 32bit memory address is equal
to a given value. This check helps avoid block/unblock deadlocks which
occur if a wake() happens before a wait().
Using Futex, other Thread synchronization primitives can be built which
efficiently wait for cross-thread events or signals.
Members
Source
//! A mechanism used to block (`wait`) and unblock (`wake`) threads using a
//! 32bit memory address as hints.
//!
//! Blocking a thread is acknowledged only if the 32bit memory address is equal
//! to a given value. This check helps avoid block/unblock deadlocks which
//! occur if a `wake()` happens before a `wait()`.
//!
//! Using Futex, other Thread synchronization primitives can be built which
//! efficiently wait for cross-thread events or signals.
const std = @import("../std.zig");
const builtin = @import("builtin");
const Futex = @This();
const windows = std.os.windows;
const linux = std.os.linux;
const c = std.c;
const assert = std.debug.assert;
const testing = std.testing;
const atomic = std.atomic;
/// Checks if `ptr` still contains the value `expect` and, if so, blocks the caller until either:
/// - The value at `ptr` is no longer equal to `expect`.
/// - The caller is unblocked by a matching `wake()`.
/// - The caller is unblocked spuriously ("at random").
///
/// The checking of `ptr` and `expect`, along with blocking the caller, is done atomically
/// and totally ordered (sequentially consistent) with respect to other wait()/wake() calls on the same `ptr`.
pub fn wait(ptr: *const atomic.Value(u32), expect: u32) void {
@branchHint(.cold);
Impl.wait(ptr, expect, null) catch |err| switch (err) {
error.Timeout => unreachable, // null timeout meant to wait forever
};
}
/// Checks if `ptr` still contains the value `expect` and, if so, blocks the caller until either:
/// - The value at `ptr` is no longer equal to `expect`.
/// - The caller is unblocked by a matching `wake()`.
/// - The caller is unblocked spuriously ("at random").
/// - The caller blocks for longer than the given timeout. In which case, `error.Timeout` is returned.
///
/// The checking of `ptr` and `expect`, along with blocking the caller, is done atomically
/// and totally ordered (sequentially consistent) with respect to other wait()/wake() calls on the same `ptr`.
pub fn timedWait(ptr: *const atomic.Value(u32), expect: u32, timeout_ns: u64) error{Timeout}!void {
@branchHint(.cold);
// Avoid calling into the OS for no-op timeouts.
if (timeout_ns == 0) {
if (ptr.load(.seq_cst) != expect) return;
return error.Timeout;
}
return Impl.wait(ptr, expect, timeout_ns);
}
/// Unblocks at most `max_waiters` callers blocked in a `wait()` call on `ptr`.
pub fn wake(ptr: *const atomic.Value(u32), max_waiters: u32) void {
@branchHint(.cold);
// Avoid calling into the OS if there's nothing to wake up.
if (max_waiters == 0) {
return;
}
Impl.wake(ptr, max_waiters);
}
const Impl = if (builtin.single_threaded)
SingleThreadedImpl
else if (builtin.os.tag == .windows)
WindowsImpl
else if (builtin.os.tag.isDarwin())
DarwinImpl
else if (builtin.os.tag == .linux)
LinuxImpl
else if (builtin.os.tag == .freebsd)
FreebsdImpl
else if (builtin.os.tag == .openbsd)
OpenbsdImpl
else if (builtin.os.tag == .dragonfly)
DragonflyImpl
else if (builtin.target.cpu.arch.isWasm())
WasmImpl
else if (std.Thread.use_pthreads)
PosixImpl
else
UnsupportedImpl;
/// We can't do @compileError() in the `Impl` switch statement above as its eagerly evaluated.
/// So instead, we @compileError() on the methods themselves for platforms which don't support futex.
const UnsupportedImpl = struct {
fn wait(ptr: *const atomic.Value(u32), expect: u32, timeout: ?u64) error{Timeout}!void {
return unsupported(.{ ptr, expect, timeout });
}
fn wake(ptr: *const atomic.Value(u32), max_waiters: u32) void {
return unsupported(.{ ptr, max_waiters });
}
fn unsupported(unused: anytype) noreturn {
_ = unused;
@compileError("Unsupported operating system " ++ @tagName(builtin.target.os.tag));
}
};
const SingleThreadedImpl = struct {
fn wait(ptr: *const atomic.Value(u32), expect: u32, timeout: ?u64) error{Timeout}!void {
if (ptr.raw != expect) {
return;
}
// There are no threads to wake us up.
// So if we wait without a timeout we would never wake up.
const delay = timeout orelse {
unreachable; // deadlock detected
};
std.time.sleep(delay);
return error.Timeout;
}
fn wake(ptr: *const atomic.Value(u32), max_waiters: u32) void {
// There are no other threads to possibly wake up
_ = ptr;
_ = max_waiters;
}
};
// We use WaitOnAddress through NtDll instead of API-MS-Win-Core-Synch-l1-2-0.dll
// as it's generally already a linked target and is autoloaded into all processes anyway.
const WindowsImpl = struct {
fn wait(ptr: *const atomic.Value(u32), expect: u32, timeout: ?u64) error{Timeout}!void {
var timeout_value: windows.LARGE_INTEGER = undefined;
var timeout_ptr: ?*const windows.LARGE_INTEGER = null;
// NTDLL functions work with time in units of 100 nanoseconds.
// Positive values are absolute deadlines while negative values are relative durations.
if (timeout) |delay| {
timeout_value = @as(windows.LARGE_INTEGER, @intCast(delay / 100));
timeout_value = -timeout_value;
timeout_ptr = &timeout_value;
}
const rc = windows.ntdll.RtlWaitOnAddress(
ptr,
&expect,
@sizeOf(@TypeOf(expect)),
timeout_ptr,
);
switch (rc) {
.SUCCESS => {},
.TIMEOUT => {
assert(timeout != null);
return error.Timeout;
},
else => unreachable,
}
}
fn wake(ptr: *const atomic.Value(u32), max_waiters: u32) void {
const address: ?*const anyopaque = ptr;
assert(max_waiters != 0);
switch (max_waiters) {
1 => windows.ntdll.RtlWakeAddressSingle(address),
else => windows.ntdll.RtlWakeAddressAll(address),
}
}
};
const DarwinImpl = struct {
fn wait(ptr: *const atomic.Value(u32), expect: u32, timeout: ?u64) error{Timeout}!void {
// Darwin XNU 7195.50.7.100.1 introduced __ulock_wait2 and migrated code paths (notably pthread_cond_t) towards it:
// https://github.com/apple/darwin-xnu/commit/d4061fb0260b3ed486147341b72468f836ed6c8f#diff-08f993cc40af475663274687b7c326cc6c3031e0db3ac8de7b24624610616be6
//
// This XNU version appears to correspond to 11.0.1:
// https://kernelshaman.blogspot.com/2021/01/building-xnu-for-macos-big-sur-1101.html
//
// ulock_wait() uses 32-bit micro-second timeouts where 0 = INFINITE or no-timeout
// ulock_wait2() uses 64-bit nano-second timeouts (with the same convention)
const supports_ulock_wait2 = builtin.target.os.version_range.semver.min.major >= 11;
var timeout_ns: u64 = 0;
if (timeout) |delay| {
assert(delay != 0); // handled by timedWait()
timeout_ns = delay;
}
// If we're using `__ulock_wait` and `timeout` is too big to fit inside a `u32` count of
// micro-seconds (around 70min), we'll request a shorter timeout. This is fine (users
// should handle spurious wakeups), but we need to remember that we did so, so that
// we don't return `Timeout` incorrectly. If that happens, we set this variable to
// true so that we we know to ignore the ETIMEDOUT result.
var timeout_overflowed = false;
const addr: *const anyopaque = ptr;
const flags: c.UL = .{
.op = .COMPARE_AND_WAIT,
.NO_ERRNO = true,
};
const status = blk: {
if (supports_ulock_wait2) {
break :blk c.__ulock_wait2(flags, addr, expect, timeout_ns, 0);
}
const timeout_us = std.math.cast(u32, timeout_ns / std.time.ns_per_us) orelse overflow: {
timeout_overflowed = true;
break :overflow std.math.maxInt(u32);
};
break :blk c.__ulock_wait(flags, addr, expect, timeout_us);
};
if (status >= 0) return;
switch (@as(c.E, @enumFromInt(-status))) {
// Wait was interrupted by the OS or other spurious signalling.
.INTR => {},
// Address of the futex was paged out. This is unlikely, but possible in theory, and
// pthread/libdispatch on darwin bother to handle it. In this case we'll return
// without waiting, but the caller should retry anyway.
.FAULT => {},
// Only report Timeout if we didn't have to cap the timeout
.TIMEDOUT => {
assert(timeout != null);
if (!timeout_overflowed) return error.Timeout;
},
else => unreachable,
}
}
fn wake(ptr: *const atomic.Value(u32), max_waiters: u32) void {
const flags: c.UL = .{
.op = .COMPARE_AND_WAIT,
.NO_ERRNO = true,
.WAKE_ALL = max_waiters > 1,
};
while (true) {
const addr: *const anyopaque = ptr;
const status = c.__ulock_wake(flags, addr, 0);
if (status >= 0) return;
switch (@as(c.E, @enumFromInt(-status))) {
.INTR => continue, // spurious wake()
.FAULT => unreachable, // __ulock_wake doesn't generate EFAULT according to darwin pthread_cond_t
.NOENT => return, // nothing was woken up
.ALREADY => unreachable, // only for UL.Op.WAKE_THREAD
else => unreachable,
}
}
}
};
// https://man7.org/linux/man-pages/man2/futex.2.html
const LinuxImpl = struct {
fn wait(ptr: *const atomic.Value(u32), expect: u32, timeout: ?u64) error{Timeout}!void {
var ts: linux.timespec = undefined;
if (timeout) |timeout_ns| {
ts.sec = @as(@TypeOf(ts.sec), @intCast(timeout_ns / std.time.ns_per_s));
ts.nsec = @as(@TypeOf(ts.nsec), @intCast(timeout_ns % std.time.ns_per_s));
}
const rc = linux.futex_wait(
@as(*const i32, @ptrCast(&ptr.raw)),
linux.FUTEX.PRIVATE_FLAG | linux.FUTEX.WAIT,
@as(i32, @bitCast(expect)),
if (timeout != null) &ts else null,
);
switch (linux.E.init(rc)) {
.SUCCESS => {}, // notified by `wake()`
.INTR => {}, // spurious wakeup
.AGAIN => {}, // ptr.* != expect
.TIMEDOUT => {
assert(timeout != null);
return error.Timeout;
},
.INVAL => {}, // possibly timeout overflow
.FAULT => unreachable, // ptr was invalid
else => unreachable,
}
}
fn wake(ptr: *const atomic.Value(u32), max_waiters: u32) void {
const rc = linux.futex_wake(
@as(*const i32, @ptrCast(&ptr.raw)),
linux.FUTEX.PRIVATE_FLAG | linux.FUTEX.WAKE,
std.math.cast(i32, max_waiters) orelse std.math.maxInt(i32),
);
switch (linux.E.init(rc)) {
.SUCCESS => {}, // successful wake up
.INVAL => {}, // invalid futex_wait() on ptr done elsewhere
.FAULT => {}, // pointer became invalid while doing the wake
else => unreachable,
}
}
};
// https://www.freebsd.org/cgi/man.cgi?query=_umtx_op&sektion=2&n=1
const FreebsdImpl = struct {
fn wait(ptr: *const atomic.Value(u32), expect: u32, timeout: ?u64) error{Timeout}!void {
var tm_size: usize = 0;
var tm: c._umtx_time = undefined;
var tm_ptr: ?*const c._umtx_time = null;
if (timeout) |timeout_ns| {
tm_ptr = &tm;
tm_size = @sizeOf(@TypeOf(tm));
tm.flags = 0; // use relative time not UMTX_ABSTIME
tm.clockid = .MONOTONIC;
tm.timeout.sec = @as(@TypeOf(tm.timeout.sec), @intCast(timeout_ns / std.time.ns_per_s));
tm.timeout.nsec = @as(@TypeOf(tm.timeout.nsec), @intCast(timeout_ns % std.time.ns_per_s));
}
const rc = c._umtx_op(
@intFromPtr(&ptr.raw),
@intFromEnum(c.UMTX_OP.WAIT_UINT_PRIVATE),
@as(c_ulong, expect),
tm_size,
@intFromPtr(tm_ptr),
);
switch (std.posix.errno(rc)) {
.SUCCESS => {},
.FAULT => unreachable, // one of the args points to invalid memory
.INVAL => unreachable, // arguments should be correct
.TIMEDOUT => {
assert(timeout != null);
return error.Timeout;
},
.INTR => {}, // spurious wake
else => unreachable,
}
}
fn wake(ptr: *const atomic.Value(u32), max_waiters: u32) void {
const rc = c._umtx_op(
@intFromPtr(&ptr.raw),
@intFromEnum(c.UMTX_OP.WAKE_PRIVATE),
@as(c_ulong, max_waiters),
0, // there is no timeout struct
0, // there is no timeout struct pointer
);
switch (std.posix.errno(rc)) {
.SUCCESS => {},
.FAULT => {}, // it's ok if the ptr doesn't point to valid memory
.INVAL => unreachable, // arguments should be correct
else => unreachable,
}
}
};
// https://man.openbsd.org/futex.2
const OpenbsdImpl = struct {
fn wait(ptr: *const atomic.Value(u32), expect: u32, timeout: ?u64) error{Timeout}!void {
var ts: c.timespec = undefined;
if (timeout) |timeout_ns| {
ts.sec = @as(@TypeOf(ts.sec), @intCast(timeout_ns / std.time.ns_per_s));
ts.nsec = @as(@TypeOf(ts.nsec), @intCast(timeout_ns % std.time.ns_per_s));
}
const rc = c.futex(
@as(*const volatile u32, @ptrCast(&ptr.raw)),
c.FUTEX.WAIT | c.FUTEX.PRIVATE_FLAG,
@as(c_int, @bitCast(expect)),
if (timeout != null) &ts else null,
null, // FUTEX.WAIT takes no requeue address
);
switch (std.posix.errno(rc)) {
.SUCCESS => {}, // woken up by wake
.NOSYS => unreachable, // the futex operation shouldn't be invalid
.FAULT => unreachable, // ptr was invalid
.AGAIN => {}, // ptr != expect
.INVAL => unreachable, // invalid timeout
.TIMEDOUT => {
assert(timeout != null);
return error.Timeout;
},
.INTR => {}, // spurious wake from signal
.CANCELED => {}, // spurious wake from signal with SA_RESTART
else => unreachable,
}
}
fn wake(ptr: *const atomic.Value(u32), max_waiters: u32) void {
const rc = c.futex(
@as(*const volatile u32, @ptrCast(&ptr.raw)),
c.FUTEX.WAKE | c.FUTEX.PRIVATE_FLAG,
std.math.cast(c_int, max_waiters) orelse std.math.maxInt(c_int),
null, // FUTEX.WAKE takes no timeout ptr
null, // FUTEX.WAKE takes no requeue address
);
// returns number of threads woken up.
assert(rc >= 0);
}
};
// https://man.dragonflybsd.org/?command=umtx§ion=2
const DragonflyImpl = struct {
fn wait(ptr: *const atomic.Value(u32), expect: u32, timeout: ?u64) error{Timeout}!void {
// Dragonfly uses a scheme where 0 timeout means wait until signaled or spurious wake.
// It's reporting of timeout's is also unrealiable so we use an external timing source (Timer) instead.
var timeout_us: c_int = 0;
var timeout_overflowed = false;
var sleep_timer: std.time.Timer = undefined;
if (timeout) |delay| {
assert(delay != 0); // handled by timedWait().
timeout_us = std.math.cast(c_int, delay / std.time.ns_per_us) orelse blk: {
timeout_overflowed = true;
break :blk std.math.maxInt(c_int);
};
// Only need to record the start time if we can provide somewhat accurate error.Timeout's
if (!timeout_overflowed) {
sleep_timer = std.time.Timer.start() catch unreachable;
}
}
const value = @as(c_int, @bitCast(expect));
const addr = @as(*const volatile c_int, @ptrCast(&ptr.raw));
const rc = c.umtx_sleep(addr, value, timeout_us);
switch (std.posix.errno(rc)) {
.SUCCESS => {},
.BUSY => {}, // ptr != expect
.AGAIN => { // maybe timed out, or paged out, or hit 2s kernel refresh
if (timeout) |timeout_ns| {
// Report error.Timeout only if we know the timeout duration has passed.
// If not, there's not much choice other than treating it as a spurious wake.
if (!timeout_overflowed and sleep_timer.read() >= timeout_ns) {
return error.Timeout;
}
}
},
.INTR => {}, // spurious wake
.INVAL => unreachable, // invalid timeout
else => unreachable,
}
}
fn wake(ptr: *const atomic.Value(u32), max_waiters: u32) void {
// A count of zero means wake all waiters.
assert(max_waiters != 0);
const to_wake = std.math.cast(c_int, max_waiters) orelse 0;
// https://man.dragonflybsd.org/?command=umtx§ion=2
// > umtx_wakeup() will generally return 0 unless the address is bad.
// We are fine with the address being bad (e.g. for Semaphore.post() where Semaphore.wait() frees the Semaphore)
const addr = @as(*const volatile c_int, @ptrCast(&ptr.raw));
_ = c.umtx_wakeup(addr, to_wake);
}
};
const WasmImpl = struct {
fn wait(ptr: *const atomic.Value(u32), expect: u32, timeout: ?u64) error{Timeout}!void {
if (!comptime std.Target.wasm.featureSetHas(builtin.target.cpu.features, .atomics)) {
@compileError("WASI target missing cpu feature 'atomics'");
}
const to: i64 = if (timeout) |to| @intCast(to) else -1;
const result = asm volatile (
\\local.get %[ptr]
\\local.get %[expected]
\\local.get %[timeout]
\\memory.atomic.wait32 0
\\local.set %[ret]
: [ret] "=r" (-> u32),
: [ptr] "r" (&ptr.raw),
[expected] "r" (@as(i32, @bitCast(expect))),
[timeout] "r" (to),
);
switch (result) {
0 => {}, // ok
1 => {}, // expected =! loaded
2 => return error.Timeout,
else => unreachable,
}
}
fn wake(ptr: *const atomic.Value(u32), max_waiters: u32) void {
if (!comptime std.Target.wasm.featureSetHas(builtin.target.cpu.features, .atomics)) {
@compileError("WASI target missing cpu feature 'atomics'");
}
assert(max_waiters != 0);
const woken_count = asm volatile (
\\local.get %[ptr]
\\local.get %[waiters]
\\memory.atomic.notify 0
\\local.set %[ret]
: [ret] "=r" (-> u32),
: [ptr] "r" (&ptr.raw),
[waiters] "r" (max_waiters),
);
_ = woken_count; // can be 0 when linker flag 'shared-memory' is not enabled
}
};
/// Modified version of linux's futex and Go's sema to implement userspace wait queues with pthread:
/// https://code.woboq.org/linux/linux/kernel/futex.c.html
/// https://go.dev/src/runtime/sema.go
const PosixImpl = struct {
const Event = struct {
cond: c.pthread_cond_t,
mutex: c.pthread_mutex_t,
state: enum { empty, waiting, notified },
fn init(self: *Event) void {
// Use static init instead of pthread_cond/mutex_init() since this is generally faster.
self.cond = .{};
self.mutex = .{};
self.state = .empty;
}
fn deinit(self: *Event) void {
// Some platforms reportedly give EINVAL for statically initialized pthread types.
const rc = c.pthread_cond_destroy(&self.cond);
assert(rc == .SUCCESS or rc == .INVAL);
const rm = c.pthread_mutex_destroy(&self.mutex);
assert(rm == .SUCCESS or rm == .INVAL);
self.* = undefined;
}
fn wait(self: *Event, timeout: ?u64) error{Timeout}!void {
assert(c.pthread_mutex_lock(&self.mutex) == .SUCCESS);
defer assert(c.pthread_mutex_unlock(&self.mutex) == .SUCCESS);
// Early return if the event was already set.
if (self.state == .notified) {
return;
}
// Compute the absolute timeout if one was specified.
// POSIX requires that REALTIME is used by default for the pthread timedwait functions.
// This can be changed with pthread_condattr_setclock, but it's an extension and may not be available everywhere.
var ts: c.timespec = undefined;
if (timeout) |timeout_ns| {
ts = std.posix.clock_gettime(c.CLOCK.REALTIME) catch unreachable;
ts.sec +|= @as(@TypeOf(ts.sec), @intCast(timeout_ns / std.time.ns_per_s));
ts.nsec += @as(@TypeOf(ts.nsec), @intCast(timeout_ns % std.time.ns_per_s));
if (ts.nsec >= std.time.ns_per_s) {
ts.sec +|= 1;
ts.nsec -= std.time.ns_per_s;
}
}
// Start waiting on the event - there can be only one thread waiting.
assert(self.state == .empty);
self.state = .waiting;
while (true) {
// Block using either pthread_cond_wait or pthread_cond_timewait if there's an absolute timeout.
const rc = blk: {
if (timeout == null) break :blk c.pthread_cond_wait(&self.cond, &self.mutex);
break :blk c.pthread_cond_timedwait(&self.cond, &self.mutex, &ts);
};
// After waking up, check if the event was set.
if (self.state == .notified) {
return;
}
assert(self.state == .waiting);
switch (rc) {
.SUCCESS => {},
.TIMEDOUT => {
// If timed out, reset the event to avoid the set() thread doing an unnecessary signal().
self.state = .empty;
return error.Timeout;
},
.INVAL => unreachable, // cond, mutex, and potentially ts should all be valid
.PERM => unreachable, // mutex is locked when cond_*wait() functions are called
else => unreachable,
}
}
}
fn set(self: *Event) void {
assert(c.pthread_mutex_lock(&self.mutex) == .SUCCESS);
defer assert(c.pthread_mutex_unlock(&self.mutex) == .SUCCESS);
// Make sure that multiple calls to set() were not done on the same Event.
const old_state = self.state;
assert(old_state != .notified);
// Mark the event as set and wake up the waiting thread if there was one.
// This must be done while the mutex as the wait() thread could deallocate
// the condition variable once it observes the new state, potentially causing a UAF if done unlocked.
self.state = .notified;
if (old_state == .waiting) {
assert(c.pthread_cond_signal(&self.cond) == .SUCCESS);
}
}
};
const Treap = std.Treap(usize, std.math.order);
const Waiter = struct {
node: Treap.Node,
prev: ?*Waiter,
next: ?*Waiter,
tail: ?*Waiter,
is_queued: bool,
event: Event,
};
// An unordered set of Waiters
const WaitList = struct {
top: ?*Waiter = null,
len: usize = 0,
fn push(self: *WaitList, waiter: *Waiter) void {
waiter.next = self.top;
self.top = waiter;
self.len += 1;
}
fn pop(self: *WaitList) ?*Waiter {
const waiter = self.top orelse return null;
self.top = waiter.next;
self.len -= 1;
return waiter;
}
};
const WaitQueue = struct {
fn insert(treap: *Treap, address: usize, waiter: *Waiter) void {
// prepare the waiter to be inserted.
waiter.next = null;
waiter.is_queued = true;
// Find the wait queue entry associated with the address.
// If there isn't a wait queue on the address, this waiter creates the queue.
var entry = treap.getEntryFor(address);
const entry_node = entry.node orelse {
waiter.prev = null;
waiter.tail = waiter;
entry.set(&waiter.node);
return;
};
// There's a wait queue on the address; get the queue head and tail.
const head: *Waiter = @fieldParentPtr("node", entry_node);
const tail = head.tail orelse unreachable;
// Push the waiter to the tail by replacing it and linking to the previous tail.
head.tail = waiter;
tail.next = waiter;
waiter.prev = tail;
}
fn remove(treap: *Treap, address: usize, max_waiters: usize) WaitList {
// Find the wait queue associated with this address and get the head/tail if any.
var entry = treap.getEntryFor(address);
var queue_head: ?*Waiter = if (entry.node) |node| @fieldParentPtr("node", node) else null;
const queue_tail = if (queue_head) |head| head.tail else null;
// Once we're done updating the head, fix it's tail pointer and update the treap's queue head as well.
defer entry.set(blk: {
const new_head = queue_head orelse break :blk null;
new_head.tail = queue_tail;
break :blk &new_head.node;
});
var removed = WaitList{};
while (removed.len < max_waiters) {
// dequeue and collect waiters from their wait queue.
const waiter = queue_head orelse break;
queue_head = waiter.next;
removed.push(waiter);
// When dequeueing, we must mark is_queued as false.
// This ensures that a waiter which calls tryRemove() returns false.
assert(waiter.is_queued);
waiter.is_queued = false;
}
return removed;
}
fn tryRemove(treap: *Treap, address: usize, waiter: *Waiter) bool {
if (!waiter.is_queued) {
return false;
}
queue_remove: {
// Find the wait queue associated with the address.
var entry = blk: {
// A waiter without a previous link means it's the queue head that's in the treap so we can avoid lookup.
if (waiter.prev == null) {
assert(waiter.node.key == address);
break :blk treap.getEntryForExisting(&waiter.node);
}
break :blk treap.getEntryFor(address);
};
// The queue head and tail must exist if we're removing a queued waiter.
const head: *Waiter = @fieldParentPtr("node", entry.node orelse unreachable);
const tail = head.tail orelse unreachable;
// A waiter with a previous link is never the head of the queue.
if (waiter.prev) |prev| {
assert(waiter != head);
prev.next = waiter.next;
// A waiter with both a previous and next link is in the middle.
// We only need to update the surrounding waiter's links to remove it.
if (waiter.next) |next| {
assert(waiter != tail);
next.prev = waiter.prev;
break :queue_remove;
}
// A waiter with a previous but no next link means it's the tail of the queue.
// In that case, we need to update the head's tail reference.
assert(waiter == tail);
head.tail = waiter.prev;
break :queue_remove;
}
// A waiter with no previous link means it's the queue head of queue.
// We must replace (or remove) the head waiter reference in the treap.
assert(waiter == head);
entry.set(blk: {
const new_head = waiter.next orelse break :blk null;
new_head.tail = head.tail;
break :blk &new_head.node;
});
}
// Mark the waiter as successfully removed.
waiter.is_queued = false;
return true;
}
};
const Bucket = struct {
mutex: c.pthread_mutex_t align(atomic.cache_line) = .{},
pending: atomic.Value(usize) = atomic.Value(usize).init(0),
treap: Treap = .{},
// Global array of buckets that addresses map to.
// Bucket array size is pretty much arbitrary here, but it must be a power of two for fibonacci hashing.
var buckets = [_]Bucket{.{}} ** @bitSizeOf(usize);
// https://github.com/Amanieu/parking_lot/blob/1cf12744d097233316afa6c8b7d37389e4211756/core/src/parking_lot.rs#L343-L353
fn from(address: usize) *Bucket {
// The upper `@bitSizeOf(usize)` bits of the fibonacci golden ratio.
// Hashing this via (h * k) >> (64 - b) where k=golden-ration and b=bitsize-of-array
// evenly lays out h=hash values over the bit range even when the hash has poor entropy (identity-hash for pointers).
const max_multiplier_bits = @bitSizeOf(usize);
const fibonacci_multiplier = 0x9E3779B97F4A7C15 >> (64 - max_multiplier_bits);
const max_bucket_bits = @ctz(buckets.len);
comptime assert(std.math.isPowerOfTwo(buckets.len));
const index = (address *% fibonacci_multiplier) >> (max_multiplier_bits - max_bucket_bits);
return &buckets[index];
}
};
const Address = struct {
fn from(ptr: *const atomic.Value(u32)) usize {
// Get the alignment of the pointer.
const alignment = @alignOf(atomic.Value(u32));
comptime assert(std.math.isPowerOfTwo(alignment));
// Make sure the pointer is aligned,
// then cut off the zero bits from the alignment to get the unique address.
const addr = @intFromPtr(ptr);
assert(addr & (alignment - 1) == 0);
return addr >> @ctz(@as(usize, alignment));
}
};
fn wait(ptr: *const atomic.Value(u32), expect: u32, timeout: ?u64) error{Timeout}!void {
const address = Address.from(ptr);
const bucket = Bucket.from(address);
// Announce that there's a waiter in the bucket before checking the ptr/expect condition.
// If the announcement is reordered after the ptr check, the waiter could deadlock:
//
// - T1: checks ptr == expect which is true
// - T2: updates ptr to != expect
// - T2: does Futex.wake(), sees no pending waiters, exits
// - T1: bumps pending waiters (was reordered after the ptr == expect check)
// - T1: goes to sleep and misses both the ptr change and T2's wake up
//
// acquire barrier to ensure the announcement happens before the ptr check below.
var pending = bucket.pending.fetchAdd(1, .acquire);
assert(pending < std.math.maxInt(usize));
// If the wait gets cancelled, remove the pending count we previously added.
// This is done outside the mutex lock to keep the critical section short in case of contention.
var cancelled = false;
defer if (cancelled) {
pending = bucket.pending.fetchSub(1, .monotonic);
assert(pending > 0);
};
var waiter: Waiter = undefined;
{
assert(c.pthread_mutex_lock(&bucket.mutex) == .SUCCESS);
defer assert(c.pthread_mutex_unlock(&bucket.mutex) == .SUCCESS);
cancelled = ptr.load(.monotonic) != expect;
if (cancelled) {
return;
}
waiter.event.init();
WaitQueue.insert(&bucket.treap, address, &waiter);
}
defer {
assert(!waiter.is_queued);
waiter.event.deinit();
}
waiter.event.wait(timeout) catch {
// If we fail to cancel after a timeout, it means a wake() thread dequeued us and will wake us up.
// We must wait until the event is set as that's a signal that the wake() thread won't access the waiter memory anymore.
// If we return early without waiting, the waiter on the stack would be invalidated and the wake() thread risks a UAF.
defer if (!cancelled) waiter.event.wait(null) catch unreachable;
assert(c.pthread_mutex_lock(&bucket.mutex) == .SUCCESS);
defer assert(c.pthread_mutex_unlock(&bucket.mutex) == .SUCCESS);
cancelled = WaitQueue.tryRemove(&bucket.treap, address, &waiter);
if (cancelled) {
return error.Timeout;
}
};
}
fn wake(ptr: *const atomic.Value(u32), max_waiters: u32) void {
const address = Address.from(ptr);
const bucket = Bucket.from(address);
// Quick check if there's even anything to wake up.
// The change to the ptr's value must happen before we check for pending waiters.
// If not, the wake() thread could miss a sleeping waiter and have it deadlock:
//
// - T2: p = has pending waiters (reordered before the ptr update)
// - T1: bump pending waiters
// - T1: if ptr == expected: sleep()
// - T2: update ptr != expected
// - T2: p is false from earlier so doesn't wake (T1 missed ptr update and T2 missed T1 sleeping)
//
// What we really want here is a Release load, but that doesn't exist under the C11 memory model.
// We could instead do `bucket.pending.fetchAdd(0, Release) == 0` which achieves effectively the same thing,
// LLVM lowers the fetchAdd(0, .release) into an mfence+load which avoids gaining ownership of the cache-line.
if (bucket.pending.fetchAdd(0, .release) == 0) {
return;
}
// Keep a list of all the waiters notified and wake then up outside the mutex critical section.
var notified = WaitList{};
defer if (notified.len > 0) {
const pending = bucket.pending.fetchSub(notified.len, .monotonic);
assert(pending >= notified.len);
while (notified.pop()) |waiter| {
assert(!waiter.is_queued);
waiter.event.set();
}
};
assert(c.pthread_mutex_lock(&bucket.mutex) == .SUCCESS);
defer assert(c.pthread_mutex_unlock(&bucket.mutex) == .SUCCESS);
// Another pending check again to avoid the WaitQueue lookup if not necessary.
if (bucket.pending.load(.monotonic) > 0) {
notified = WaitQueue.remove(&bucket.treap, address, max_waiters);
}
}
};
test "smoke test" {
var value = atomic.Value(u32).init(0);
// Try waits with invalid values.
Futex.wait(&value, 0xdeadbeef);
Futex.timedWait(&value, 0xdeadbeef, 0) catch {};
// Try timeout waits.
try testing.expectError(error.Timeout, Futex.timedWait(&value, 0, 0));
try testing.expectError(error.Timeout, Futex.timedWait(&value, 0, std.time.ns_per_ms));
// Try wakes
Futex.wake(&value, 0);
Futex.wake(&value, 1);
Futex.wake(&value, std.math.maxInt(u32));
}
test "signaling" {
// This test requires spawning threads
if (builtin.single_threaded) {
return error.SkipZigTest;
}
const num_threads = 4;
const num_iterations = 4;
const Paddle = struct {
value: atomic.Value(u32) = atomic.Value(u32).init(0),
current: u32 = 0,
fn hit(self: *@This()) void {
_ = self.value.fetchAdd(1, .release);
Futex.wake(&self.value, 1);
}
fn run(self: *@This(), hit_to: *@This()) !void {
while (self.current < num_iterations) {
// Wait for the value to change from hit()
var new_value: u32 = undefined;
while (true) {
new_value = self.value.load(.acquire);
if (new_value != self.current) break;
Futex.wait(&self.value, self.current);
}
// change the internal "current" value
try testing.expectEqual(new_value, self.current + 1);
self.current = new_value;
// hit the next paddle
hit_to.hit();
}
}
};
var paddles = [_]Paddle{.{}} ** num_threads;
var threads = [_]std.Thread{undefined} ** num_threads;
// Create a circle of paddles which hit each other
for (&threads, 0..) |*t, i| {
const paddle = &paddles[i];
const hit_to = &paddles[(i + 1) % paddles.len];
t.* = try std.Thread.spawn(.{}, Paddle.run, .{ paddle, hit_to });
}
// Hit the first paddle and wait for them all to complete by hitting each other for num_iterations.
paddles[0].hit();
for (threads) |t| t.join();
for (paddles) |p| try testing.expectEqual(p.current, num_iterations);
}
test "broadcasting" {
// This test requires spawning threads
if (builtin.single_threaded) {
return error.SkipZigTest;
}
const num_threads = 4;
const num_iterations = 4;
const Barrier = struct {
count: atomic.Value(u32) = atomic.Value(u32).init(num_threads),
futex: atomic.Value(u32) = atomic.Value(u32).init(0),
fn wait(self: *@This()) !void {
// Decrement the counter.
// Release ensures stuff before this barrier.wait() happens before the last one.
// Acquire for the last counter ensures stuff before previous barrier.wait()s happened before it.
const count = self.count.fetchSub(1, .acq_rel);
try testing.expect(count <= num_threads);
try testing.expect(count > 0);
// First counter to reach zero wakes all other threads.
// Release on futex update ensures stuff before all barrier.wait()'s happens before they all return.
if (count - 1 == 0) {
self.futex.store(1, .release);
Futex.wake(&self.futex, num_threads - 1);
return;
}
// Other threads wait until last counter wakes them up.
// Acquire on futex synchronizes with last barrier count to ensure stuff before all barrier.wait()'s happen before us.
while (self.futex.load(.acquire) == 0) {
Futex.wait(&self.futex, 0);
}
}
};
const Broadcast = struct {
barriers: [num_iterations]Barrier = [_]Barrier{.{}} ** num_iterations,
threads: [num_threads]std.Thread = undefined,
fn run(self: *@This()) !void {
for (&self.barriers) |*barrier| {
try barrier.wait();
}
}
};
var broadcast = Broadcast{};
for (&broadcast.threads) |*t| t.* = try std.Thread.spawn(.{}, Broadcast.run, .{&broadcast});
for (broadcast.threads) |t| t.join();
}
/// Deadline is used to wait efficiently for a pointer's value to change using Futex and a fixed timeout.
///
/// Futex's timedWait() api uses a relative duration which suffers from over-waiting
/// when used in a loop which is often required due to the possibility of spurious wakeups.
///
/// Deadline instead converts the relative timeout to an absolute one so that multiple calls
/// to Futex timedWait() can block for and report more accurate error.Timeouts.
pub const Deadline = struct {
timeout: ?u64,
started: std.time.Timer,
/// Create the deadline to expire after the given amount of time in nanoseconds passes.
/// Pass in `null` to have the deadline call `Futex.wait()` and never expire.
pub fn init(expires_in_ns: ?u64) Deadline {
var deadline: Deadline = undefined;
deadline.timeout = expires_in_ns;
// std.time.Timer is required to be supported for somewhat accurate reportings of error.Timeout.
if (deadline.timeout != null) {
deadline.started = std.time.Timer.start() catch unreachable;
}
return deadline;
}
/// Wait until either:
/// - the `ptr`'s value changes from `expect`.
/// - `Futex.wake()` is called on the `ptr`.
/// - A spurious wake occurs.
/// - The deadline expires; In which case `error.Timeout` is returned.
pub fn wait(self: *Deadline, ptr: *const atomic.Value(u32), expect: u32) error{Timeout}!void {
@branchHint(.cold);
// Check if we actually have a timeout to wait until.
// If not just wait "forever".
const timeout_ns = self.timeout orelse {
return Futex.wait(ptr, expect);
};
// Get how much time has passed since we started waiting
// then subtract that from the init() timeout to get how much longer to wait.
// Use overflow to detect when we've been waiting longer than the init() timeout.
const elapsed_ns = self.started.read();
const until_timeout_ns = std.math.sub(u64, timeout_ns, elapsed_ns) catch 0;
return Futex.timedWait(ptr, expect, until_timeout_ns);
}
};
test "Deadline" {
var deadline = Deadline.init(100 * std.time.ns_per_ms);
var futex_word = atomic.Value(u32).init(0);
while (true) {
deadline.wait(&futex_word, 0) catch break;
}
}