struct Thread [src]
Alias for std.Thread
This struct represents a kernel thread, and acts as a namespace for concurrency
primitives that operate on kernel threads. For concurrency primitives that support
both evented I/O and async I/O, see the respective names in the top level std namespace.
Fields
impl: Impl
Members
- Condition (struct)
- CpuCountError (Error Set)
- detach (Function)
- Futex (struct)
- getCpuCount (Function)
- getCurrentId (Function)
- getHandle (Function)
- getName (Function)
- GetNameError (Error Set)
- Handle (Constant)
- Id (Type)
- join (Function)
- max_name_len (Constant)
- Mutex (struct)
- Pool (struct)
- ResetEvent (struct)
- run (Function)
- RwLock (struct)
- Semaphore (struct)
- setName (Function)
- SetNameError (Error Set)
- sleep (Function)
- spawn (Function)
- SpawnConfig (struct)
- SpawnError (Error Set)
- use_pthreads (Constant)
- WaitGroup (struct)
- yield (Function)
- YieldError (Error Set)
Source
//! This struct represents a kernel thread, and acts as a namespace for concurrency
//! primitives that operate on kernel threads. For concurrency primitives that support
//! both evented I/O and async I/O, see the respective names in the top level std namespace.
const std = @import("std.zig");
const builtin = @import("builtin");
const math = std.math;
const assert = std.debug.assert;
const target = builtin.target;
const native_os = builtin.os.tag;
const posix = std.posix;
const windows = std.os.windows;
pub const Futex = @import("Thread/Futex.zig");
pub const ResetEvent = @import("Thread/ResetEvent.zig");
pub const Mutex = @import("Thread/Mutex.zig");
pub const Semaphore = @import("Thread/Semaphore.zig");
pub const Condition = @import("Thread/Condition.zig");
pub const RwLock = @import("Thread/RwLock.zig");
pub const Pool = @import("Thread/Pool.zig");
pub const WaitGroup = @import("Thread/WaitGroup.zig");
pub const use_pthreads = native_os != .windows and native_os != .wasi and builtin.link_libc;
/// Spurious wakeups are possible and no precision of timing is guaranteed.
pub fn sleep(nanoseconds: u64) void {
if (builtin.os.tag == .windows) {
const big_ms_from_ns = nanoseconds / std.time.ns_per_ms;
const ms = math.cast(windows.DWORD, big_ms_from_ns) orelse math.maxInt(windows.DWORD);
windows.kernel32.Sleep(ms);
return;
}
if (builtin.os.tag == .wasi) {
const w = std.os.wasi;
const userdata: w.userdata_t = 0x0123_45678;
const clock: w.subscription_clock_t = .{
.id = .MONOTONIC,
.timeout = nanoseconds,
.precision = 0,
.flags = 0,
};
const in: w.subscription_t = .{
.userdata = userdata,
.u = .{
.tag = .CLOCK,
.u = .{ .clock = clock },
},
};
var event: w.event_t = undefined;
var nevents: usize = undefined;
_ = w.poll_oneoff(&in, &event, 1, &nevents);
return;
}
if (builtin.os.tag == .uefi) {
const boot_services = std.os.uefi.system_table.boot_services.?;
const us_from_ns = nanoseconds / std.time.ns_per_us;
const us = math.cast(usize, us_from_ns) orelse math.maxInt(usize);
_ = boot_services.stall(us);
return;
}
const s = nanoseconds / std.time.ns_per_s;
const ns = nanoseconds % std.time.ns_per_s;
// Newer kernel ports don't have old `nanosleep()` and `clock_nanosleep()` has been around
// since Linux 2.6 and glibc 2.1 anyway.
if (builtin.os.tag == .linux) {
const linux = std.os.linux;
var req: linux.timespec = .{
.sec = std.math.cast(linux.time_t, s) orelse std.math.maxInt(linux.time_t),
.nsec = std.math.cast(linux.time_t, ns) orelse std.math.maxInt(linux.time_t),
};
var rem: linux.timespec = undefined;
while (true) {
switch (linux.E.init(linux.clock_nanosleep(.MONOTONIC, .{ .ABSTIME = false }, &req, &rem))) {
.SUCCESS => return,
.INTR => {
req = rem;
continue;
},
.FAULT,
.INVAL,
.OPNOTSUPP,
=> unreachable,
else => return,
}
}
}
posix.nanosleep(s, ns);
}
test sleep {
sleep(1);
}
const Thread = @This();
const Impl = if (native_os == .windows)
WindowsThreadImpl
else if (use_pthreads)
PosixThreadImpl
else if (native_os == .linux)
LinuxThreadImpl
else if (native_os == .wasi)
WasiThreadImpl
else
UnsupportedImpl;
impl: Impl,
pub const max_name_len = switch (native_os) {
.linux => 15,
.windows => 31,
.macos, .ios, .watchos, .tvos, .visionos => 63,
.netbsd => 31,
.freebsd => 15,
.openbsd => 23,
.dragonfly => 1023,
.solaris, .illumos => 31,
// https://github.com/SerenityOS/serenity/blob/6b4c300353da49d3508b5442cf61da70bd04d757/Kernel/Tasks/Thread.h#L102
.serenity => 63,
else => 0,
};
pub const SetNameError = error{
NameTooLong,
Unsupported,
Unexpected,
} || posix.PrctlError || posix.WriteError || std.fs.File.OpenError || std.fmt.BufPrintError;
pub fn setName(self: Thread, name: []const u8) SetNameError!void {
if (name.len > max_name_len) return error.NameTooLong;
const name_with_terminator = blk: {
var name_buf: [max_name_len:0]u8 = undefined;
@memcpy(name_buf[0..name.len], name);
name_buf[name.len] = 0;
break :blk name_buf[0..name.len :0];
};
switch (native_os) {
.linux => if (use_pthreads) {
if (self.getHandle() == std.c.pthread_self()) {
// Set the name of the calling thread (no thread id required).
const err = try posix.prctl(.SET_NAME, .{@intFromPtr(name_with_terminator.ptr)});
switch (@as(posix.E, @enumFromInt(err))) {
.SUCCESS => return,
else => |e| return posix.unexpectedErrno(e),
}
} else {
const err = std.c.pthread_setname_np(self.getHandle(), name_with_terminator.ptr);
switch (@as(posix.E, @enumFromInt(err))) {
.SUCCESS => return,
.RANGE => unreachable,
else => |e| return posix.unexpectedErrno(e),
}
}
} else {
var buf: [32]u8 = undefined;
const path = try std.fmt.bufPrint(&buf, "/proc/self/task/{d}/comm", .{self.getHandle()});
const file = try std.fs.cwd().openFile(path, .{ .mode = .write_only });
defer file.close();
try file.writer().writeAll(name);
return;
},
.windows => {
var buf: [max_name_len]u16 = undefined;
const len = try std.unicode.wtf8ToWtf16Le(&buf, name);
const byte_len = math.cast(c_ushort, len * 2) orelse return error.NameTooLong;
// Note: NT allocates its own copy, no use-after-free here.
const unicode_string = windows.UNICODE_STRING{
.Length = byte_len,
.MaximumLength = byte_len,
.Buffer = &buf,
};
switch (windows.ntdll.NtSetInformationThread(
self.getHandle(),
.ThreadNameInformation,
&unicode_string,
@sizeOf(windows.UNICODE_STRING),
)) {
.SUCCESS => return,
.NOT_IMPLEMENTED => return error.Unsupported,
else => |err| return windows.unexpectedStatus(err),
}
},
.macos, .ios, .watchos, .tvos, .visionos => if (use_pthreads) {
// There doesn't seem to be a way to set the name for an arbitrary thread, only the current one.
if (self.getHandle() != std.c.pthread_self()) return error.Unsupported;
const err = std.c.pthread_setname_np(name_with_terminator.ptr);
switch (@as(posix.E, @enumFromInt(err))) {
.SUCCESS => return,
else => |e| return posix.unexpectedErrno(e),
}
},
.serenity => if (use_pthreads) {
const err = std.c.pthread_setname_np(self.getHandle(), name_with_terminator.ptr);
switch (@as(posix.E, @enumFromInt(err))) {
.SUCCESS => return,
.NAMETOOLONG => unreachable,
.SRCH => unreachable,
else => |e| return posix.unexpectedErrno(e),
}
},
.netbsd, .solaris, .illumos => if (use_pthreads) {
const err = std.c.pthread_setname_np(self.getHandle(), name_with_terminator.ptr, null);
switch (@as(posix.E, @enumFromInt(err))) {
.SUCCESS => return,
.INVAL => unreachable,
.SRCH => unreachable,
.NOMEM => unreachable,
else => |e| return posix.unexpectedErrno(e),
}
},
.freebsd, .openbsd => if (use_pthreads) {
// Use pthread_set_name_np for FreeBSD because pthread_setname_np is FreeBSD 12.2+ only.
// TODO maybe revisit this if depending on FreeBSD 12.2+ is acceptable because
// pthread_setname_np can return an error.
std.c.pthread_set_name_np(self.getHandle(), name_with_terminator.ptr);
return;
},
.dragonfly => if (use_pthreads) {
const err = std.c.pthread_setname_np(self.getHandle(), name_with_terminator.ptr);
switch (@as(posix.E, @enumFromInt(err))) {
.SUCCESS => return,
.INVAL => unreachable,
.FAULT => unreachable,
.NAMETOOLONG => unreachable, // already checked
.SRCH => unreachable,
else => |e| return posix.unexpectedErrno(e),
}
},
else => {},
}
return error.Unsupported;
}
pub const GetNameError = error{
Unsupported,
Unexpected,
} || posix.PrctlError || posix.ReadError || std.fs.File.OpenError || std.fmt.BufPrintError;
/// On Windows, the result is encoded as [WTF-8](https://simonsapin.github.io/wtf-8/).
/// On other platforms, the result is an opaque sequence of bytes with no particular encoding.
pub fn getName(self: Thread, buffer_ptr: *[max_name_len:0]u8) GetNameError!?[]const u8 {
buffer_ptr[max_name_len] = 0;
var buffer: [:0]u8 = buffer_ptr;
switch (native_os) {
.linux => if (use_pthreads) {
if (self.getHandle() == std.c.pthread_self()) {
// Get the name of the calling thread (no thread id required).
const err = try posix.prctl(.GET_NAME, .{@intFromPtr(buffer.ptr)});
switch (@as(posix.E, @enumFromInt(err))) {
.SUCCESS => return std.mem.sliceTo(buffer, 0),
else => |e| return posix.unexpectedErrno(e),
}
} else {
const err = std.c.pthread_getname_np(self.getHandle(), buffer.ptr, max_name_len + 1);
switch (@as(posix.E, @enumFromInt(err))) {
.SUCCESS => return std.mem.sliceTo(buffer, 0),
.RANGE => unreachable,
else => |e| return posix.unexpectedErrno(e),
}
}
} else {
var buf: [32]u8 = undefined;
const path = try std.fmt.bufPrint(&buf, "/proc/self/task/{d}/comm", .{self.getHandle()});
const file = try std.fs.cwd().openFile(path, .{});
defer file.close();
const data_len = try file.reader().readAll(buffer_ptr[0 .. max_name_len + 1]);
return if (data_len >= 1) buffer[0 .. data_len - 1] else null;
},
.windows => {
const buf_capacity = @sizeOf(windows.UNICODE_STRING) + (@sizeOf(u16) * max_name_len);
var buf: [buf_capacity]u8 align(@alignOf(windows.UNICODE_STRING)) = undefined;
switch (windows.ntdll.NtQueryInformationThread(
self.getHandle(),
.ThreadNameInformation,
&buf,
buf_capacity,
null,
)) {
.SUCCESS => {
const string = @as(*const windows.UNICODE_STRING, @ptrCast(&buf));
const len = std.unicode.wtf16LeToWtf8(buffer, string.Buffer.?[0 .. string.Length / 2]);
return if (len > 0) buffer[0..len] else null;
},
.NOT_IMPLEMENTED => return error.Unsupported,
else => |err| return windows.unexpectedStatus(err),
}
},
.macos, .ios, .watchos, .tvos, .visionos => if (use_pthreads) {
const err = std.c.pthread_getname_np(self.getHandle(), buffer.ptr, max_name_len + 1);
switch (@as(posix.E, @enumFromInt(err))) {
.SUCCESS => return std.mem.sliceTo(buffer, 0),
.SRCH => unreachable,
else => |e| return posix.unexpectedErrno(e),
}
},
.serenity => if (use_pthreads) {
const err = std.c.pthread_getname_np(self.getHandle(), buffer.ptr, max_name_len + 1);
switch (@as(posix.E, @enumFromInt(err))) {
.SUCCESS => return,
.NAMETOOLONG => unreachable,
.SRCH => unreachable,
.FAULT => unreachable,
else => |e| return posix.unexpectedErrno(e),
}
},
.netbsd, .solaris, .illumos => if (use_pthreads) {
const err = std.c.pthread_getname_np(self.getHandle(), buffer.ptr, max_name_len + 1);
switch (@as(posix.E, @enumFromInt(err))) {
.SUCCESS => return std.mem.sliceTo(buffer, 0),
.INVAL => unreachable,
.SRCH => unreachable,
else => |e| return posix.unexpectedErrno(e),
}
},
.freebsd, .openbsd => if (use_pthreads) {
// Use pthread_get_name_np for FreeBSD because pthread_getname_np is FreeBSD 12.2+ only.
// TODO maybe revisit this if depending on FreeBSD 12.2+ is acceptable because pthread_getname_np can return an error.
std.c.pthread_get_name_np(self.getHandle(), buffer.ptr, max_name_len + 1);
return std.mem.sliceTo(buffer, 0);
},
.dragonfly => if (use_pthreads) {
const err = std.c.pthread_getname_np(self.getHandle(), buffer.ptr, max_name_len + 1);
switch (@as(posix.E, @enumFromInt(err))) {
.SUCCESS => return std.mem.sliceTo(buffer, 0),
.INVAL => unreachable,
.FAULT => unreachable,
.SRCH => unreachable,
else => |e| return posix.unexpectedErrno(e),
}
},
else => {},
}
return error.Unsupported;
}
/// Represents an ID per thread guaranteed to be unique only within a process.
pub const Id = switch (native_os) {
.linux,
.dragonfly,
.netbsd,
.freebsd,
.openbsd,
.haiku,
.wasi,
.serenity,
=> u32,
.macos, .ios, .watchos, .tvos, .visionos => u64,
.windows => windows.DWORD,
else => usize,
};
/// Returns the platform ID of the callers thread.
/// Attempts to use thread locals and avoid syscalls when possible.
pub fn getCurrentId() Id {
return Impl.getCurrentId();
}
pub const CpuCountError = error{
PermissionDenied,
SystemResources,
Unsupported,
Unexpected,
};
/// Returns the platforms view on the number of logical CPU cores available.
pub fn getCpuCount() CpuCountError!usize {
return try Impl.getCpuCount();
}
/// Configuration options for hints on how to spawn threads.
pub const SpawnConfig = struct {
// TODO compile-time call graph analysis to determine stack upper bound
// https://github.com/ziglang/zig/issues/157
/// Size in bytes of the Thread's stack
stack_size: usize = default_stack_size,
/// The allocator to be used to allocate memory for the to-be-spawned thread
allocator: ?std.mem.Allocator = null,
pub const default_stack_size = 16 * 1024 * 1024;
};
pub const SpawnError = error{
/// A system-imposed limit on the number of threads was encountered.
/// There are a number of limits that may trigger this error:
/// * the RLIMIT_NPROC soft resource limit (set via setrlimit(2)),
/// which limits the number of processes and threads for a real
/// user ID, was reached;
/// * the kernel's system-wide limit on the number of processes and
/// threads, /proc/sys/kernel/threads-max, was reached (see
/// proc(5));
/// * the maximum number of PIDs, /proc/sys/kernel/pid_max, was
/// reached (see proc(5)); or
/// * the PID limit (pids.max) imposed by the cgroup "process num‐
/// ber" (PIDs) controller was reached.
ThreadQuotaExceeded,
/// The kernel cannot allocate sufficient memory to allocate a task structure
/// for the child, or to copy those parts of the caller's context that need to
/// be copied.
SystemResources,
/// Not enough userland memory to spawn the thread.
OutOfMemory,
/// `mlockall` is enabled, and the memory needed to spawn the thread
/// would exceed the limit.
LockedMemoryLimitExceeded,
Unexpected,
};
/// Spawns a new thread which executes `function` using `args` and returns a handle to the spawned thread.
/// `config` can be used as hints to the platform for how to spawn and execute the `function`.
/// The caller must eventually either call `join()` to wait for the thread to finish and free its resources
/// or call `detach()` to excuse the caller from calling `join()` and have the thread clean up its resources on completion.
pub fn spawn(config: SpawnConfig, comptime function: anytype, args: anytype) SpawnError!Thread {
if (builtin.single_threaded) {
@compileError("Cannot spawn thread when building in single-threaded mode");
}
const impl = try Impl.spawn(config, function, args);
return Thread{ .impl = impl };
}
/// Represents a kernel thread handle.
/// May be an integer or a pointer depending on the platform.
pub const Handle = Impl.ThreadHandle;
/// Returns the handle of this thread
pub fn getHandle(self: Thread) Handle {
return self.impl.getHandle();
}
/// Release the obligation of the caller to call `join()` and have the thread clean up its own resources on completion.
/// Once called, this consumes the Thread object and invoking any other functions on it is considered undefined behavior.
pub fn detach(self: Thread) void {
return self.impl.detach();
}
/// Waits for the thread to complete, then deallocates any resources created on `spawn()`.
/// Once called, this consumes the Thread object and invoking any other functions on it is considered undefined behavior.
pub fn join(self: Thread) void {
return self.impl.join();
}
pub const YieldError = error{
/// The system is not configured to allow yielding
SystemCannotYield,
};
/// Yields the current thread potentially allowing other threads to run.
pub fn yield() YieldError!void {
if (native_os == .windows) {
// The return value has to do with how many other threads there are; it is not
// an error condition on Windows.
_ = windows.kernel32.SwitchToThread();
return;
}
switch (posix.errno(posix.system.sched_yield())) {
.SUCCESS => return,
.NOSYS => return error.SystemCannotYield,
else => return error.SystemCannotYield,
}
}
/// State to synchronize detachment of spawner thread to spawned thread
const Completion = std.atomic.Value(enum(if (builtin.zig_backend == .stage2_riscv64) u32 else u8) {
running,
detached,
completed,
});
/// Used by the Thread implementations to call the spawned function with the arguments.
fn callFn(comptime f: anytype, args: anytype) switch (Impl) {
WindowsThreadImpl => windows.DWORD,
LinuxThreadImpl => u8,
PosixThreadImpl => ?*anyopaque,
else => unreachable,
} {
const default_value = if (Impl == PosixThreadImpl) null else 0;
const bad_fn_ret = "expected return type of startFn to be 'u8', 'noreturn', '!noreturn', 'void', or '!void'";
switch (@typeInfo(@typeInfo(@TypeOf(f)).@"fn".return_type.?)) {
.noreturn => {
@call(.auto, f, args);
},
.void => {
@call(.auto, f, args);
return default_value;
},
.int => |info| {
if (info.bits != 8) {
@compileError(bad_fn_ret);
}
const status = @call(.auto, f, args);
if (Impl != PosixThreadImpl) {
return status;
}
// pthreads don't support exit status, ignore value
return default_value;
},
.error_union => |info| {
switch (info.payload) {
void, noreturn => {
@call(.auto, f, args) catch |err| {
std.debug.print("error: {s}\n", .{@errorName(err)});
if (@errorReturnTrace()) |trace| {
std.debug.dumpStackTrace(trace.*);
}
};
return default_value;
},
else => {
@compileError(bad_fn_ret);
},
}
},
else => {
@compileError(bad_fn_ret);
},
}
}
/// We can't compile error in the `Impl` switch statement as its eagerly evaluated.
/// So instead, we compile-error on the methods themselves for platforms which don't support threads.
const UnsupportedImpl = struct {
pub const ThreadHandle = void;
fn getCurrentId() usize {
return unsupported({});
}
fn getCpuCount() !usize {
return unsupported({});
}
fn spawn(config: SpawnConfig, comptime f: anytype, args: anytype) !Impl {
return unsupported(.{ config, f, args });
}
fn getHandle(self: Impl) ThreadHandle {
return unsupported(self);
}
fn detach(self: Impl) void {
return unsupported(self);
}
fn join(self: Impl) void {
return unsupported(self);
}
fn unsupported(unused: anytype) noreturn {
_ = unused;
@compileError("Unsupported operating system " ++ @tagName(native_os));
}
};
const WindowsThreadImpl = struct {
pub const ThreadHandle = windows.HANDLE;
fn getCurrentId() windows.DWORD {
return windows.GetCurrentThreadId();
}
fn getCpuCount() !usize {
// Faster than calling into GetSystemInfo(), even if amortized.
return windows.peb().NumberOfProcessors;
}
thread: *ThreadCompletion,
const ThreadCompletion = struct {
completion: Completion,
heap_ptr: windows.PVOID,
heap_handle: windows.HANDLE,
thread_handle: windows.HANDLE = undefined,
fn free(self: ThreadCompletion) void {
const status = windows.kernel32.HeapFree(self.heap_handle, 0, self.heap_ptr);
assert(status != 0);
}
};
fn spawn(config: SpawnConfig, comptime f: anytype, args: anytype) !Impl {
const Args = @TypeOf(args);
const Instance = struct {
fn_args: Args,
thread: ThreadCompletion,
fn entryFn(raw_ptr: windows.PVOID) callconv(.winapi) windows.DWORD {
const self: *@This() = @ptrCast(@alignCast(raw_ptr));
defer switch (self.thread.completion.swap(.completed, .seq_cst)) {
.running => {},
.completed => unreachable,
.detached => self.thread.free(),
};
return callFn(f, self.fn_args);
}
};
const heap_handle = windows.kernel32.GetProcessHeap() orelse return error.OutOfMemory;
const alloc_bytes = @alignOf(Instance) + @sizeOf(Instance);
const alloc_ptr = windows.kernel32.HeapAlloc(heap_handle, 0, alloc_bytes) orelse return error.OutOfMemory;
errdefer assert(windows.kernel32.HeapFree(heap_handle, 0, alloc_ptr) != 0);
const instance_bytes = @as([*]u8, @ptrCast(alloc_ptr))[0..alloc_bytes];
var fba = std.heap.FixedBufferAllocator.init(instance_bytes);
const instance = fba.allocator().create(Instance) catch unreachable;
instance.* = .{
.fn_args = args,
.thread = .{
.completion = Completion.init(.running),
.heap_ptr = alloc_ptr,
.heap_handle = heap_handle,
},
};
// Windows appears to only support SYSTEM_INFO.dwAllocationGranularity minimum stack size.
// Going lower makes it default to that specified in the executable (~1mb).
// Its also fine if the limit here is incorrect as stack size is only a hint.
var stack_size = std.math.cast(u32, config.stack_size) orelse std.math.maxInt(u32);
stack_size = @max(64 * 1024, stack_size);
instance.thread.thread_handle = windows.kernel32.CreateThread(
null,
stack_size,
Instance.entryFn,
instance,
0,
null,
) orelse {
const errno = windows.GetLastError();
return windows.unexpectedError(errno);
};
return Impl{ .thread = &instance.thread };
}
fn getHandle(self: Impl) ThreadHandle {
return self.thread.thread_handle;
}
fn detach(self: Impl) void {
windows.CloseHandle(self.thread.thread_handle);
switch (self.thread.completion.swap(.detached, .seq_cst)) {
.running => {},
.completed => self.thread.free(),
.detached => unreachable,
}
}
fn join(self: Impl) void {
windows.WaitForSingleObjectEx(self.thread.thread_handle, windows.INFINITE, false) catch unreachable;
windows.CloseHandle(self.thread.thread_handle);
assert(self.thread.completion.load(.seq_cst) == .completed);
self.thread.free();
}
};
const PosixThreadImpl = struct {
const c = std.c;
pub const ThreadHandle = c.pthread_t;
fn getCurrentId() Id {
switch (native_os) {
.linux => {
return LinuxThreadImpl.getCurrentId();
},
.macos, .ios, .watchos, .tvos, .visionos => {
var thread_id: u64 = undefined;
// Pass thread=null to get the current thread ID.
assert(c.pthread_threadid_np(null, &thread_id) == 0);
return thread_id;
},
.dragonfly => {
return @as(u32, @bitCast(c.lwp_gettid()));
},
.netbsd => {
return @as(u32, @bitCast(c._lwp_self()));
},
.freebsd => {
return @as(u32, @bitCast(c.pthread_getthreadid_np()));
},
.openbsd => {
return @as(u32, @bitCast(c.getthrid()));
},
.haiku => {
return @as(u32, @bitCast(c.find_thread(null)));
},
.serenity => {
return @as(u32, @bitCast(c.pthread_self()));
},
else => {
return @intFromPtr(c.pthread_self());
},
}
}
fn getCpuCount() !usize {
switch (native_os) {
.linux => {
return LinuxThreadImpl.getCpuCount();
},
.openbsd => {
var count: c_int = undefined;
var count_size: usize = @sizeOf(c_int);
const mib = [_]c_int{ std.c.CTL.HW, std.c.HW.NCPUONLINE };
posix.sysctl(&mib, &count, &count_size, null, 0) catch |err| switch (err) {
error.NameTooLong, error.UnknownName => unreachable,
else => |e| return e,
};
return @as(usize, @intCast(count));
},
.solaris, .illumos, .serenity => {
// The "proper" way to get the cpu count would be to query
// /dev/kstat via ioctls, and traverse a linked list for each
// cpu. (solaris, illumos)
const rc = c.sysconf(@intFromEnum(std.c._SC.NPROCESSORS_ONLN));
return switch (posix.errno(rc)) {
.SUCCESS => @as(usize, @intCast(rc)),
else => |err| posix.unexpectedErrno(err),
};
},
.haiku => {
var system_info: std.c.system_info = undefined;
const rc = std.c.get_system_info(&system_info); // always returns B_OK
return switch (posix.errno(rc)) {
.SUCCESS => @as(usize, @intCast(system_info.cpu_count)),
else => |err| posix.unexpectedErrno(err),
};
},
else => {
var count: c_int = undefined;
var count_len: usize = @sizeOf(c_int);
const name = if (comptime target.os.tag.isDarwin()) "hw.logicalcpu" else "hw.ncpu";
posix.sysctlbynameZ(name, &count, &count_len, null, 0) catch |err| switch (err) {
error.NameTooLong, error.UnknownName => unreachable,
else => |e| return e,
};
return @as(usize, @intCast(count));
},
}
}
handle: ThreadHandle,
fn spawn(config: SpawnConfig, comptime f: anytype, args: anytype) !Impl {
const Args = @TypeOf(args);
const allocator = std.heap.c_allocator;
const Instance = struct {
fn entryFn(raw_arg: ?*anyopaque) callconv(.c) ?*anyopaque {
const args_ptr: *Args = @ptrCast(@alignCast(raw_arg));
defer allocator.destroy(args_ptr);
return callFn(f, args_ptr.*);
}
};
const args_ptr = try allocator.create(Args);
args_ptr.* = args;
errdefer allocator.destroy(args_ptr);
var attr: c.pthread_attr_t = undefined;
if (c.pthread_attr_init(&attr) != .SUCCESS) return error.SystemResources;
defer assert(c.pthread_attr_destroy(&attr) == .SUCCESS);
// Use the same set of parameters used by the libc-less impl.
const stack_size = @max(config.stack_size, 16 * 1024);
assert(c.pthread_attr_setstacksize(&attr, stack_size) == .SUCCESS);
assert(c.pthread_attr_setguardsize(&attr, std.heap.pageSize()) == .SUCCESS);
var handle: c.pthread_t = undefined;
switch (c.pthread_create(
&handle,
&attr,
Instance.entryFn,
@ptrCast(args_ptr),
)) {
.SUCCESS => return Impl{ .handle = handle },
.AGAIN => return error.SystemResources,
.PERM => unreachable,
.INVAL => unreachable,
else => |err| return posix.unexpectedErrno(err),
}
}
fn getHandle(self: Impl) ThreadHandle {
return self.handle;
}
fn detach(self: Impl) void {
switch (c.pthread_detach(self.handle)) {
.SUCCESS => {},
.INVAL => unreachable, // thread handle is not joinable
.SRCH => unreachable, // thread handle is invalid
else => unreachable,
}
}
fn join(self: Impl) void {
switch (c.pthread_join(self.handle, null)) {
.SUCCESS => {},
.INVAL => unreachable, // thread handle is not joinable (or another thread is already joining in)
.SRCH => unreachable, // thread handle is invalid
.DEADLK => unreachable, // two threads tried to join each other
else => unreachable,
}
}
};
const WasiThreadImpl = struct {
thread: *WasiThread,
pub const ThreadHandle = i32;
threadlocal var tls_thread_id: Id = 0;
const WasiThread = struct {
/// Thread ID
tid: std.atomic.Value(i32) = std.atomic.Value(i32).init(0),
/// Contains all memory which was allocated to bootstrap this thread, including:
/// - Guard page
/// - Stack
/// - TLS segment
/// - `Instance`
/// All memory is freed upon call to `join`
memory: []u8,
/// The allocator used to allocate the thread's memory,
/// which is also used during `join` to ensure clean-up.
allocator: std.mem.Allocator,
/// The current state of the thread.
state: State = State.init(.running),
};
/// A meta-data structure used to bootstrap a thread
const Instance = struct {
thread: WasiThread,
/// Contains the offset to the new __tls_base.
/// The offset starting from the memory's base.
tls_offset: usize,
/// Contains the offset to the stack for the newly spawned thread.
/// The offset is calculated starting from the memory's base.
stack_offset: usize,
/// Contains the raw pointer value to the wrapper which holds all arguments
/// for the callback.
raw_ptr: usize,
/// Function pointer to a wrapping function which will call the user's
/// function upon thread spawn. The above mentioned pointer will be passed
/// to this function pointer as its argument.
call_back: *const fn (usize) void,
/// When a thread is in `detached` state, we must free all of its memory
/// upon thread completion. However, as this is done while still within
/// the thread, we must first jump back to the main thread's stack or else
/// we end up freeing the stack that we're currently using.
original_stack_pointer: [*]u8,
};
const State = std.atomic.Value(enum(u8) { running, completed, detached });
fn getCurrentId() Id {
return tls_thread_id;
}
fn getCpuCount() error{Unsupported}!noreturn {
return error.Unsupported;
}
fn getHandle(self: Impl) ThreadHandle {
return self.thread.tid.load(.seq_cst);
}
fn detach(self: Impl) void {
switch (self.thread.state.swap(.detached, .seq_cst)) {
.running => {},
.completed => self.join(),
.detached => unreachable,
}
}
fn join(self: Impl) void {
defer {
// Create a copy of the allocator so we do not free the reference to the
// original allocator while freeing the memory.
var allocator = self.thread.allocator;
allocator.free(self.thread.memory);
}
var spin: u8 = 10;
while (true) {
const tid = self.thread.tid.load(.seq_cst);
if (tid == 0) {
break;
}
if (spin > 0) {
spin -= 1;
std.atomic.spinLoopHint();
continue;
}
const result = asm (
\\ local.get %[ptr]
\\ local.get %[expected]
\\ i64.const -1 # infinite
\\ memory.atomic.wait32 0
\\ local.set %[ret]
: [ret] "=r" (-> u32),
: [ptr] "r" (&self.thread.tid.raw),
[expected] "r" (tid),
);
switch (result) {
0 => continue, // ok
1 => continue, // expected =! loaded
2 => unreachable, // timeout (infinite)
else => unreachable,
}
}
}
fn spawn(config: std.Thread.SpawnConfig, comptime f: anytype, args: anytype) SpawnError!WasiThreadImpl {
if (config.allocator == null) {
@panic("an allocator is required to spawn a WASI thread");
}
// Wrapping struct required to hold the user-provided function arguments.
const Wrapper = struct {
args: @TypeOf(args),
fn entry(ptr: usize) void {
const w: *@This() = @ptrFromInt(ptr);
const bad_fn_ret = "expected return type of startFn to be 'u8', 'noreturn', 'void', or '!void'";
switch (@typeInfo(@typeInfo(@TypeOf(f)).@"fn".return_type.?)) {
.noreturn, .void => {
@call(.auto, f, w.args);
},
.int => |info| {
if (info.bits != 8) {
@compileError(bad_fn_ret);
}
_ = @call(.auto, f, w.args); // WASI threads don't support exit status, ignore value
},
.error_union => |info| {
if (info.payload != void) {
@compileError(bad_fn_ret);
}
@call(.auto, f, w.args) catch |err| {
std.debug.print("error: {s}\n", .{@errorName(err)});
if (@errorReturnTrace()) |trace| {
std.debug.dumpStackTrace(trace.*);
}
};
},
else => {
@compileError(bad_fn_ret);
},
}
}
};
var stack_offset: usize = undefined;
var tls_offset: usize = undefined;
var wrapper_offset: usize = undefined;
var instance_offset: usize = undefined;
// Calculate the bytes we have to allocate to store all thread information, including:
// - The actual stack for the thread
// - The TLS segment
// - `Instance` - containing information about how to call the user's function.
const map_bytes = blk: {
// start with atleast a single page, which is used as a guard to prevent
// other threads clobbering our new thread.
// Unfortunately, WebAssembly has no notion of read-only segments, so this
// is only a best effort.
var bytes: usize = std.wasm.page_size;
bytes = std.mem.alignForward(usize, bytes, 16); // align stack to 16 bytes
stack_offset = bytes;
bytes += @max(std.wasm.page_size, config.stack_size);
bytes = std.mem.alignForward(usize, bytes, __tls_align());
tls_offset = bytes;
bytes += __tls_size();
bytes = std.mem.alignForward(usize, bytes, @alignOf(Wrapper));
wrapper_offset = bytes;
bytes += @sizeOf(Wrapper);
bytes = std.mem.alignForward(usize, bytes, @alignOf(Instance));
instance_offset = bytes;
bytes += @sizeOf(Instance);
bytes = std.mem.alignForward(usize, bytes, std.wasm.page_size);
break :blk bytes;
};
// Allocate the amount of memory required for all meta data.
const allocated_memory = try config.allocator.?.alloc(u8, map_bytes);
const wrapper: *Wrapper = @ptrCast(@alignCast(&allocated_memory[wrapper_offset]));
wrapper.* = .{ .args = args };
const instance: *Instance = @ptrCast(@alignCast(&allocated_memory[instance_offset]));
instance.* = .{
.thread = .{ .memory = allocated_memory, .allocator = config.allocator.? },
.tls_offset = tls_offset,
.stack_offset = stack_offset,
.raw_ptr = @intFromPtr(wrapper),
.call_back = &Wrapper.entry,
.original_stack_pointer = __get_stack_pointer(),
};
const tid = spawnWasiThread(instance);
// The specification says any value lower than 0 indicates an error.
// The values of such error are unspecified. WASI-Libc treats it as EAGAIN.
if (tid < 0) {
return error.SystemResources;
}
instance.thread.tid.store(tid, .seq_cst);
return .{ .thread = &instance.thread };
}
comptime {
if (!builtin.single_threaded) {
@export(&wasi_thread_start, .{ .name = "wasi_thread_start" });
}
}
/// Called by the host environment after thread creation.
fn wasi_thread_start(tid: i32, arg: *Instance) callconv(.c) void {
comptime assert(!builtin.single_threaded);
__set_stack_pointer(arg.thread.memory.ptr + arg.stack_offset);
__wasm_init_tls(arg.thread.memory.ptr + arg.tls_offset);
@atomicStore(u32, &WasiThreadImpl.tls_thread_id, @intCast(tid), .seq_cst);
// Finished bootstrapping, call user's procedure.
arg.call_back(arg.raw_ptr);
switch (arg.thread.state.swap(.completed, .seq_cst)) {
.running => {
// reset the Thread ID
asm volatile (
\\ local.get %[ptr]
\\ i32.const 0
\\ i32.atomic.store 0
:
: [ptr] "r" (&arg.thread.tid.raw),
);
// Wake the main thread listening to this thread
asm volatile (
\\ local.get %[ptr]
\\ i32.const 1 # waiters
\\ memory.atomic.notify 0
\\ drop # no need to know the waiters
:
: [ptr] "r" (&arg.thread.tid.raw),
);
},
.completed => unreachable,
.detached => {
// restore the original stack pointer so we can free the memory
// without having to worry about freeing the stack
__set_stack_pointer(arg.original_stack_pointer);
// Ensure a copy so we don't free the allocator reference itself
var allocator = arg.thread.allocator;
allocator.free(arg.thread.memory);
},
}
}
/// Asks the host to create a new thread for us.
/// Newly created thread will call `wasi_tread_start` with the thread ID as well
/// as the input `arg` that was provided to `spawnWasiThread`
const spawnWasiThread = @"thread-spawn";
extern "wasi" fn @"thread-spawn"(arg: *Instance) i32;
/// Initializes the TLS data segment starting at `memory`.
/// This is a synthetic function, generated by the linker.
extern fn __wasm_init_tls(memory: [*]u8) void;
/// Returns a pointer to the base of the TLS data segment for the current thread
inline fn __tls_base() [*]u8 {
return asm (
\\ .globaltype __tls_base, i32
\\ global.get __tls_base
\\ local.set %[ret]
: [ret] "=r" (-> [*]u8),
);
}
/// Returns the size of the TLS segment
inline fn __tls_size() u32 {
return asm volatile (
\\ .globaltype __tls_size, i32, immutable
\\ global.get __tls_size
\\ local.set %[ret]
: [ret] "=r" (-> u32),
);
}
/// Returns the alignment of the TLS segment
inline fn __tls_align() u32 {
return asm (
\\ .globaltype __tls_align, i32, immutable
\\ global.get __tls_align
\\ local.set %[ret]
: [ret] "=r" (-> u32),
);
}
/// Allows for setting the stack pointer in the WebAssembly module.
inline fn __set_stack_pointer(addr: [*]u8) void {
asm volatile (
\\ local.get %[ptr]
\\ global.set __stack_pointer
:
: [ptr] "r" (addr),
);
}
/// Returns the current value of the stack pointer
inline fn __get_stack_pointer() [*]u8 {
return asm (
\\ global.get __stack_pointer
\\ local.set %[stack_ptr]
: [stack_ptr] "=r" (-> [*]u8),
);
}
};
const LinuxThreadImpl = struct {
const linux = std.os.linux;
pub const ThreadHandle = i32;
threadlocal var tls_thread_id: ?Id = null;
fn getCurrentId() Id {
return tls_thread_id orelse {
const tid = @as(u32, @bitCast(linux.gettid()));
tls_thread_id = tid;
return tid;
};
}
fn getCpuCount() !usize {
const cpu_set = try posix.sched_getaffinity(0);
return posix.CPU_COUNT(cpu_set);
}
thread: *ThreadCompletion,
const ThreadCompletion = struct {
completion: Completion = Completion.init(.running),
child_tid: std.atomic.Value(i32) = std.atomic.Value(i32).init(1),
parent_tid: i32 = undefined,
mapped: []align(std.heap.page_size_min) u8,
/// Calls `munmap(mapped.ptr, mapped.len)` then `exit(1)` without touching the stack (which lives in `mapped.ptr`).
/// Ported over from musl libc's pthread detached implementation:
/// https://github.com/ifduyue/musl/search?q=__unmapself
fn freeAndExit(self: *ThreadCompletion) noreturn {
switch (target.cpu.arch) {
.x86 => asm volatile (
\\ movl $91, %%eax # SYS_munmap
\\ movl %[ptr], %%ebx
\\ movl %[len], %%ecx
\\ int $128
\\ movl $1, %%eax # SYS_exit
\\ movl $0, %%ebx
\\ int $128
:
: [ptr] "r" (@intFromPtr(self.mapped.ptr)),
[len] "r" (self.mapped.len),
: "memory"
),
.x86_64 => asm volatile (
\\ movq $11, %%rax # SYS_munmap
\\ syscall
\\ movq $60, %%rax # SYS_exit
\\ movq $1, %%rdi
\\ syscall
:
: [ptr] "{rdi}" (@intFromPtr(self.mapped.ptr)),
[len] "{rsi}" (self.mapped.len),
),
.arm, .armeb, .thumb, .thumbeb => asm volatile (
\\ mov r7, #91 // SYS_munmap
\\ mov r0, %[ptr]
\\ mov r1, %[len]
\\ svc 0
\\ mov r7, #1 // SYS_exit
\\ mov r0, #0
\\ svc 0
:
: [ptr] "r" (@intFromPtr(self.mapped.ptr)),
[len] "r" (self.mapped.len),
: "memory"
),
.aarch64, .aarch64_be => asm volatile (
\\ mov x8, #215 // SYS_munmap
\\ mov x0, %[ptr]
\\ mov x1, %[len]
\\ svc 0
\\ mov x8, #93 // SYS_exit
\\ mov x0, #0
\\ svc 0
:
: [ptr] "r" (@intFromPtr(self.mapped.ptr)),
[len] "r" (self.mapped.len),
: "memory"
),
.hexagon => asm volatile (
\\ r6 = #215 // SYS_munmap
\\ r0 = %[ptr]
\\ r1 = %[len]
\\ trap0(#1)
\\ r6 = #93 // SYS_exit
\\ r0 = #0
\\ trap0(#1)
:
: [ptr] "r" (@intFromPtr(self.mapped.ptr)),
[len] "r" (self.mapped.len),
: "memory"
),
// We set `sp` to the address of the current function as a workaround for a Linux
// kernel bug that caused syscalls to return EFAULT if the stack pointer is invalid.
// The bug was introduced in 46e12c07b3b9603c60fc1d421ff18618241cb081 and fixed in
// 7928eb0370d1133d0d8cd2f5ddfca19c309079d5.
.mips, .mipsel => asm volatile (
\\ move $sp, $25
\\ li $2, 4091 # SYS_munmap
\\ move $4, %[ptr]
\\ move $5, %[len]
\\ syscall
\\ li $2, 4001 # SYS_exit
\\ li $4, 0
\\ syscall
:
: [ptr] "r" (@intFromPtr(self.mapped.ptr)),
[len] "r" (self.mapped.len),
: "memory"
),
.mips64, .mips64el => asm volatile (
\\ li $2, 5011 # SYS_munmap
\\ move $4, %[ptr]
\\ move $5, %[len]
\\ syscall
\\ li $2, 5058 # SYS_exit
\\ li $4, 0
\\ syscall
:
: [ptr] "r" (@intFromPtr(self.mapped.ptr)),
[len] "r" (self.mapped.len),
: "memory"
),
.powerpc, .powerpcle, .powerpc64, .powerpc64le => asm volatile (
\\ li 0, 91 # SYS_munmap
\\ mr 3, %[ptr]
\\ mr 4, %[len]
\\ sc
\\ li 0, 1 # SYS_exit
\\ li 3, 0
\\ sc
\\ blr
:
: [ptr] "r" (@intFromPtr(self.mapped.ptr)),
[len] "r" (self.mapped.len),
: "memory"
),
.riscv32, .riscv64 => asm volatile (
\\ li a7, 215 # SYS_munmap
\\ mv a0, %[ptr]
\\ mv a1, %[len]
\\ ecall
\\ li a7, 93 # SYS_exit
\\ mv a0, zero
\\ ecall
:
: [ptr] "r" (@intFromPtr(self.mapped.ptr)),
[len] "r" (self.mapped.len),
: "memory"
),
.s390x => asm volatile (
\\ lgr %%r2, %[ptr]
\\ lgr %%r3, %[len]
\\ svc 91 # SYS_munmap
\\ lghi %%r2, 0
\\ svc 1 # SYS_exit
:
: [ptr] "r" (@intFromPtr(self.mapped.ptr)),
[len] "r" (self.mapped.len),
: "memory"
),
.sparc => asm volatile (
\\ # See sparc64 comments below.
\\ 1:
\\ cmp %%fp, 0
\\ beq 2f
\\ nop
\\ ba 1b
\\ restore
\\ 2:
\\ mov 73, %%g1 // SYS_munmap
\\ mov %[ptr], %%o0
\\ mov %[len], %%o1
\\ t 0x3 # ST_FLUSH_WINDOWS
\\ t 0x10
\\ mov 1, %%g1 // SYS_exit
\\ mov 0, %%o0
\\ t 0x10
:
: [ptr] "r" (@intFromPtr(self.mapped.ptr)),
[len] "r" (self.mapped.len),
: "memory"
),
.sparc64 => asm volatile (
\\ # SPARCs really don't like it when active stack frames
\\ # is unmapped (it will result in a segfault), so we
\\ # force-deactivate it by running `restore` until
\\ # all frames are cleared.
\\ 1:
\\ cmp %%fp, 0
\\ beq 2f
\\ nop
\\ ba 1b
\\ restore
\\ 2:
\\ mov 73, %%g1 // SYS_munmap
\\ mov %[ptr], %%o0
\\ mov %[len], %%o1
\\ # Flush register window contents to prevent background
\\ # memory access before unmapping the stack.
\\ flushw
\\ t 0x6d
\\ mov 1, %%g1 // SYS_exit
\\ mov 0, %%o0
\\ t 0x6d
:
: [ptr] "r" (@intFromPtr(self.mapped.ptr)),
[len] "r" (self.mapped.len),
: "memory"
),
.loongarch32, .loongarch64 => asm volatile (
\\ or $a0, $zero, %[ptr]
\\ or $a1, $zero, %[len]
\\ ori $a7, $zero, 215 # SYS_munmap
\\ syscall 0 # call munmap
\\ ori $a0, $zero, 0
\\ ori $a7, $zero, 93 # SYS_exit
\\ syscall 0 # call exit
:
: [ptr] "r" (@intFromPtr(self.mapped.ptr)),
[len] "r" (self.mapped.len),
: "memory"
),
else => |cpu_arch| @compileError("Unsupported linux arch: " ++ @tagName(cpu_arch)),
}
unreachable;
}
};
fn spawn(config: SpawnConfig, comptime f: anytype, args: anytype) !Impl {
const page_size = std.heap.pageSize();
const Args = @TypeOf(args);
const Instance = struct {
fn_args: Args,
thread: ThreadCompletion,
fn entryFn(raw_arg: usize) callconv(.c) u8 {
const self = @as(*@This(), @ptrFromInt(raw_arg));
defer switch (self.thread.completion.swap(.completed, .seq_cst)) {
.running => {},
.completed => unreachable,
.detached => self.thread.freeAndExit(),
};
return callFn(f, self.fn_args);
}
};
var guard_offset: usize = undefined;
var stack_offset: usize = undefined;
var tls_offset: usize = undefined;
var instance_offset: usize = undefined;
const map_bytes = blk: {
var bytes: usize = page_size;
guard_offset = bytes;
bytes += @max(page_size, config.stack_size);
bytes = std.mem.alignForward(usize, bytes, page_size);
stack_offset = bytes;
bytes = std.mem.alignForward(usize, bytes, linux.tls.area_desc.alignment);
tls_offset = bytes;
bytes += linux.tls.area_desc.size;
bytes = std.mem.alignForward(usize, bytes, @alignOf(Instance));
instance_offset = bytes;
bytes += @sizeOf(Instance);
bytes = std.mem.alignForward(usize, bytes, page_size);
break :blk bytes;
};
// map all memory needed without read/write permissions
// to avoid committing the whole region right away
// anonymous mapping ensures file descriptor limits are not exceeded
const mapped = posix.mmap(
null,
map_bytes,
posix.PROT.NONE,
.{ .TYPE = .PRIVATE, .ANONYMOUS = true },
-1,
0,
) catch |err| switch (err) {
error.MemoryMappingNotSupported => unreachable,
error.AccessDenied => unreachable,
error.PermissionDenied => unreachable,
error.ProcessFdQuotaExceeded => unreachable,
error.SystemFdQuotaExceeded => unreachable,
error.MappingAlreadyExists => unreachable,
else => |e| return e,
};
assert(mapped.len >= map_bytes);
errdefer posix.munmap(mapped);
// map everything but the guard page as read/write
posix.mprotect(
@alignCast(mapped[guard_offset..]),
posix.PROT.READ | posix.PROT.WRITE,
) catch |err| switch (err) {
error.AccessDenied => unreachable,
else => |e| return e,
};
// Prepare the TLS segment and prepare a user_desc struct when needed on x86
var tls_ptr = linux.tls.prepareArea(mapped[tls_offset..]);
var user_desc: if (target.cpu.arch == .x86) linux.user_desc else void = undefined;
if (target.cpu.arch == .x86) {
defer tls_ptr = @intFromPtr(&user_desc);
user_desc = .{
.entry_number = linux.tls.area_desc.gdt_entry_number,
.base_addr = tls_ptr,
.limit = 0xfffff,
.flags = .{
.seg_32bit = 1,
.contents = 0, // Data
.read_exec_only = 0,
.limit_in_pages = 1,
.seg_not_present = 0,
.useable = 1,
},
};
}
const instance: *Instance = @ptrCast(@alignCast(&mapped[instance_offset]));
instance.* = .{
.fn_args = args,
.thread = .{ .mapped = mapped },
};
const flags: u32 = linux.CLONE.THREAD | linux.CLONE.DETACHED |
linux.CLONE.VM | linux.CLONE.FS | linux.CLONE.FILES |
linux.CLONE.PARENT_SETTID | linux.CLONE.CHILD_CLEARTID |
linux.CLONE.SIGHAND | linux.CLONE.SYSVSEM | linux.CLONE.SETTLS;
switch (linux.E.init(linux.clone(
Instance.entryFn,
@intFromPtr(&mapped[stack_offset]),
flags,
@intFromPtr(instance),
&instance.thread.parent_tid,
tls_ptr,
&instance.thread.child_tid.raw,
))) {
.SUCCESS => return Impl{ .thread = &instance.thread },
.AGAIN => return error.ThreadQuotaExceeded,
.INVAL => unreachable,
.NOMEM => return error.SystemResources,
.NOSPC => unreachable,
.PERM => unreachable,
.USERS => unreachable,
else => |err| return posix.unexpectedErrno(err),
}
}
fn getHandle(self: Impl) ThreadHandle {
return self.thread.parent_tid;
}
fn detach(self: Impl) void {
switch (self.thread.completion.swap(.detached, .seq_cst)) {
.running => {},
.completed => self.join(),
.detached => unreachable,
}
}
fn join(self: Impl) void {
defer posix.munmap(self.thread.mapped);
var spin: u8 = 10;
while (true) {
const tid = self.thread.child_tid.load(.seq_cst);
if (tid == 0) {
break;
}
if (spin > 0) {
spin -= 1;
std.atomic.spinLoopHint();
continue;
}
switch (linux.E.init(linux.futex_wait(
&self.thread.child_tid.raw,
linux.FUTEX.WAIT,
tid,
null,
))) {
.SUCCESS => continue,
.INTR => continue,
.AGAIN => continue,
else => unreachable,
}
}
}
};
fn testThreadName(thread: *Thread) !void {
const testCases = &[_][]const u8{
"mythread",
"b" ** max_name_len,
};
inline for (testCases) |tc| {
try thread.setName(tc);
var name_buffer: [max_name_len:0]u8 = undefined;
const name = try thread.getName(&name_buffer);
if (name) |value| {
try std.testing.expectEqual(tc.len, value.len);
try std.testing.expectEqualStrings(tc, value);
}
}
}
test "setName, getName" {
if (builtin.single_threaded) return error.SkipZigTest;
const Context = struct {
start_wait_event: ResetEvent = .{},
test_done_event: ResetEvent = .{},
thread_done_event: ResetEvent = .{},
done: std.atomic.Value(bool) = std.atomic.Value(bool).init(false),
thread: Thread = undefined,
pub fn run(ctx: *@This()) !void {
// Wait for the main thread to have set the thread field in the context.
ctx.start_wait_event.wait();
switch (native_os) {
.windows => testThreadName(&ctx.thread) catch |err| switch (err) {
error.Unsupported => return error.SkipZigTest,
else => return err,
},
else => try testThreadName(&ctx.thread),
}
// Signal our test is done
ctx.test_done_event.set();
// wait for the thread to property exit
ctx.thread_done_event.wait();
}
};
var context = Context{};
var thread = try spawn(.{}, Context.run, .{&context});
context.thread = thread;
context.start_wait_event.set();
context.test_done_event.wait();
switch (native_os) {
.macos, .ios, .watchos, .tvos, .visionos => {
const res = thread.setName("foobar");
try std.testing.expectError(error.Unsupported, res);
},
.windows => testThreadName(&thread) catch |err| switch (err) {
error.Unsupported => return error.SkipZigTest,
else => return err,
},
else => try testThreadName(&thread),
}
context.thread_done_event.set();
thread.join();
}
test {
// Doesn't use testing.refAllDecls() since that would pull in the compileError spinLoopHint.
_ = Futex;
_ = ResetEvent;
_ = Mutex;
_ = Semaphore;
_ = Condition;
_ = RwLock;
_ = Pool;
}
fn testIncrementNotify(value: *usize, event: *ResetEvent) void {
value.* += 1;
event.set();
}
test join {
if (builtin.single_threaded) return error.SkipZigTest;
var value: usize = 0;
var event = ResetEvent{};
const thread = try Thread.spawn(.{}, testIncrementNotify, .{ &value, &event });
thread.join();
try std.testing.expectEqual(value, 1);
}
test detach {
if (builtin.single_threaded) return error.SkipZigTest;
var value: usize = 0;
var event = ResetEvent{};
const thread = try Thread.spawn(.{}, testIncrementNotify, .{ &value, &event });
thread.detach();
event.wait();
try std.testing.expectEqual(value, 1);
}