struct ResetEvent [src]
Alias for std.Thread.ResetEvent
ResetEvent is a thread-safe bool which can be set to true/false ("set"/"unset").
It can also block threads until the "bool" is set with cancellation via timed waits.
ResetEvent can be statically initialized and is at most @sizeOf(u64) large.
Fields
impl: Impl = .{}
Members
Source
//! ResetEvent is a thread-safe bool which can be set to true/false ("set"/"unset").
//! It can also block threads until the "bool" is set with cancellation via timed waits.
//! ResetEvent can be statically initialized and is at most `@sizeOf(u64)` large.
const std = @import("../std.zig");
const builtin = @import("builtin");
const ResetEvent = @This();
const os = std.os;
const assert = std.debug.assert;
const testing = std.testing;
const Futex = std.Thread.Futex;
impl: Impl = .{},
/// Returns if the ResetEvent was set().
/// Once reset() is called, this returns false until the next set().
/// The memory accesses before the set() can be said to happen before isSet() returns true.
pub fn isSet(self: *const ResetEvent) bool {
return self.impl.isSet();
}
/// Block's the callers thread until the ResetEvent is set().
/// This is effectively a more efficient version of `while (!isSet()) {}`.
/// The memory accesses before the set() can be said to happen before wait() returns.
pub fn wait(self: *ResetEvent) void {
self.impl.wait(null) catch |err| switch (err) {
error.Timeout => unreachable, // no timeout provided so we shouldn't have timed-out
};
}
/// Block's the callers thread until the ResetEvent is set(), or until the corresponding timeout expires.
/// If the timeout expires before the ResetEvent is set, `error.Timeout` is returned.
/// This is effectively a more efficient version of `while (!isSet()) {}`.
/// The memory accesses before the set() can be said to happen before timedWait() returns without error.
pub fn timedWait(self: *ResetEvent, timeout_ns: u64) error{Timeout}!void {
return self.impl.wait(timeout_ns);
}
/// Marks the ResetEvent as "set" and unblocks any threads in `wait()` or `timedWait()` to observe the new state.
/// The ResetEvent says "set" until reset() is called, making future set() calls do nothing semantically.
/// The memory accesses before set() can be said to happen before isSet() returns true or wait()/timedWait() return successfully.
pub fn set(self: *ResetEvent) void {
self.impl.set();
}
/// Unmarks the ResetEvent from its "set" state if set() was called previously.
/// It is undefined behavior is reset() is called while threads are blocked in wait() or timedWait().
/// Concurrent calls to set(), isSet() and reset() are allowed.
pub fn reset(self: *ResetEvent) void {
self.impl.reset();
}
const Impl = if (builtin.single_threaded)
SingleThreadedImpl
else
FutexImpl;
const SingleThreadedImpl = struct {
is_set: bool = false,
fn isSet(self: *const Impl) bool {
return self.is_set;
}
fn wait(self: *Impl, timeout: ?u64) error{Timeout}!void {
if (self.isSet()) {
return;
}
// There are no other threads to wake us up.
// So if we wait without a timeout we would never wake up.
const timeout_ns = timeout orelse {
unreachable; // deadlock detected
};
std.time.sleep(timeout_ns);
return error.Timeout;
}
fn set(self: *Impl) void {
self.is_set = true;
}
fn reset(self: *Impl) void {
self.is_set = false;
}
};
const FutexImpl = struct {
state: std.atomic.Value(u32) = std.atomic.Value(u32).init(unset),
const unset = 0;
const waiting = 1;
const is_set = 2;
fn isSet(self: *const Impl) bool {
// Acquire barrier ensures memory accesses before set() happen before we return true.
return self.state.load(.acquire) == is_set;
}
fn wait(self: *Impl, timeout: ?u64) error{Timeout}!void {
// Outline the slow path to allow isSet() to be inlined
if (!self.isSet()) {
return self.waitUntilSet(timeout);
}
}
fn waitUntilSet(self: *Impl, timeout: ?u64) error{Timeout}!void {
@branchHint(.cold);
// Try to set the state from `unset` to `waiting` to indicate
// to the set() thread that others are blocked on the ResetEvent.
// We avoid using any strict barriers until the end when we know the ResetEvent is set.
var state = self.state.load(.acquire);
if (state == unset) {
state = self.state.cmpxchgStrong(state, waiting, .acquire, .acquire) orelse waiting;
}
// Wait until the ResetEvent is set since the state is waiting.
if (state == waiting) {
var futex_deadline = Futex.Deadline.init(timeout);
while (true) {
const wait_result = futex_deadline.wait(&self.state, waiting);
// Check if the ResetEvent was set before possibly reporting error.Timeout below.
state = self.state.load(.acquire);
if (state != waiting) {
break;
}
try wait_result;
}
}
assert(state == is_set);
}
fn set(self: *Impl) void {
// Quick check if the ResetEvent is already set before doing the atomic swap below.
// set() could be getting called quite often and multiple threads calling swap() increases contention unnecessarily.
if (self.state.load(.monotonic) == is_set) {
return;
}
// Mark the ResetEvent as set and unblock all waiters waiting on it if any.
// Release barrier ensures memory accesses before set() happen before the ResetEvent is observed to be "set".
if (self.state.swap(is_set, .release) == waiting) {
Futex.wake(&self.state, std.math.maxInt(u32));
}
}
fn reset(self: *Impl) void {
self.state.store(unset, .monotonic);
}
};
test "smoke test" {
// make sure the event is unset
var event = ResetEvent{};
try testing.expectEqual(false, event.isSet());
// make sure the event gets set
event.set();
try testing.expectEqual(true, event.isSet());
// make sure the event gets unset again
event.reset();
try testing.expectEqual(false, event.isSet());
// waits should timeout as there's no other thread to set the event
try testing.expectError(error.Timeout, event.timedWait(0));
try testing.expectError(error.Timeout, event.timedWait(std.time.ns_per_ms));
// set the event again and make sure waits complete
event.set();
event.wait();
try event.timedWait(std.time.ns_per_ms);
try testing.expectEqual(true, event.isSet());
}
test "signaling" {
// This test requires spawning threads
if (builtin.single_threaded) {
return error.SkipZigTest;
}
const Context = struct {
in: ResetEvent = .{},
out: ResetEvent = .{},
value: usize = 0,
fn input(self: *@This()) !void {
// wait for the value to become 1
self.in.wait();
self.in.reset();
try testing.expectEqual(self.value, 1);
// bump the value and wake up output()
self.value = 2;
self.out.set();
// wait for output to receive 2, bump the value and wake us up with 3
self.in.wait();
self.in.reset();
try testing.expectEqual(self.value, 3);
// bump the value and wake up output() for it to see 4
self.value = 4;
self.out.set();
}
fn output(self: *@This()) !void {
// start with 0 and bump the value for input to see 1
try testing.expectEqual(self.value, 0);
self.value = 1;
self.in.set();
// wait for input to receive 1, bump the value to 2 and wake us up
self.out.wait();
self.out.reset();
try testing.expectEqual(self.value, 2);
// bump the value to 3 for input to see (rhymes)
self.value = 3;
self.in.set();
// wait for input to bump the value to 4 and receive no more (rhymes)
self.out.wait();
self.out.reset();
try testing.expectEqual(self.value, 4);
}
};
var ctx = Context{};
const thread = try std.Thread.spawn(.{}, Context.output, .{&ctx});
defer thread.join();
try ctx.input();
}
test "broadcast" {
// This test requires spawning threads
if (builtin.single_threaded) {
return error.SkipZigTest;
}
const num_threads = 10;
const Barrier = struct {
event: ResetEvent = .{},
counter: std.atomic.Value(usize) = std.atomic.Value(usize).init(num_threads),
fn wait(self: *@This()) void {
if (self.counter.fetchSub(1, .acq_rel) == 1) {
self.event.set();
}
}
};
const Context = struct {
start_barrier: Barrier = .{},
finish_barrier: Barrier = .{},
fn run(self: *@This()) void {
self.start_barrier.wait();
self.finish_barrier.wait();
}
};
var ctx = Context{};
var threads: [num_threads - 1]std.Thread = undefined;
for (&threads) |*t| t.* = try std.Thread.spawn(.{}, Context.run, .{&ctx});
defer for (threads) |t| t.join();
ctx.run();
}