Function spawnWgId [src]
Runs func in the thread pool, calling WaitGroup.start beforehand, and
WaitGroup.finish after it returns.
The first argument passed to func is a dense usize thread id, the rest
of the arguments are passed from args. Requires the pool to have been
initialized with .track_ids = true.
In the case that queuing the function call fails to allocate memory, or the
target is single-threaded, the function is called directly.
Prototype
pub fn spawnWgId(pool: *Pool, wait_group: *WaitGroup, comptime func: anytype, args: anytype) void
Parameters
pool: *Pool
wait_group: *WaitGroup
Source
pub fn spawnWgId(pool: *Pool, wait_group: *WaitGroup, comptime func: anytype, args: anytype) void {
wait_group.start();
if (builtin.single_threaded) {
@call(.auto, func, .{0} ++ args);
wait_group.finish();
return;
}
const Args = @TypeOf(args);
const Closure = struct {
arguments: Args,
pool: *Pool,
run_node: RunQueue.Node = .{ .data = .{ .runFn = runFn } },
wait_group: *WaitGroup,
fn runFn(runnable: *Runnable, id: ?usize) void {
const run_node: *RunQueue.Node = @fieldParentPtr("data", runnable);
const closure: *@This() = @alignCast(@fieldParentPtr("run_node", run_node));
@call(.auto, func, .{id.?} ++ closure.arguments);
closure.wait_group.finish();
// The thread pool's allocator is protected by the mutex.
const mutex = &closure.pool.mutex;
mutex.lock();
defer mutex.unlock();
closure.pool.allocator.destroy(closure);
}
};
{
pool.mutex.lock();
const closure = pool.allocator.create(Closure) catch {
const id: ?usize = pool.ids.getIndex(std.Thread.getCurrentId());
pool.mutex.unlock();
@call(.auto, func, .{id.?} ++ args);
wait_group.finish();
return;
};
closure.* = .{
.arguments = args,
.pool = pool,
.wait_group = wait_group,
};
pool.run_queue.prepend(&closure.run_node);
pool.mutex.unlock();
}
// Notify waiting threads outside the lock to try and keep the critical section small.
pool.cond.signal();
}