struct path [src]
Alias for std.fs.path
POSIX paths are arbitrary sequences of u8 with no particular encoding.
Windows paths are arbitrary sequences of u16 (WTF-16).
For cross-platform APIs that deal with sequences of u8, Windows
paths are encoded by Zig as WTF-8.
WTF-8 is a superset of UTF-8 that allows encoding surrogate codepoints,
which enables lossless roundtripping when converting to/from WTF-16
(as long as the WTF-8 encoded surrogate codepoints do not form a pair).
WASI paths are sequences of valid Unicode scalar values,
which means that WASI is unable to handle paths that cannot be
encoded as well-formed UTF-8/UTF-16.
https://github.com/WebAssembly/wasi-filesystem/issues/17#issuecomment-1430639353
Members
- basename (Function)
- basenamePosix (Function)
- basenameWindows (Function)
- componentIterator (Function)
- ComponentIterator (Type Function)
- delimiter (Constant)
- delimiter_posix (Constant)
- delimiter_windows (Constant)
- dirname (Function)
- dirnamePosix (Function)
- dirnameWindows (Function)
- diskDesignator (Function)
- diskDesignatorWindows (Function)
- extension (Function)
- fmtAsUtf8Lossy (Function)
- fmtJoin (Function)
- fmtWtf16LeAsUtf8Lossy (Function)
- isAbsolute (Function)
- isAbsolutePosix (Function)
- isAbsolutePosixZ (Function)
- isAbsoluteWindows (Function)
- isAbsoluteWindowsW (Function)
- isAbsoluteWindowsWTF16 (Function)
- isAbsoluteWindowsZ (Function)
- isAbsoluteZ (Function)
- isSep (Function)
- join (Function)
- joinZ (Function)
- NativeComponentIterator (Type)
- PathType (enum)
- relative (Function)
- relativePosix (Function)
- relativeWindows (Function)
- resolve (Function)
- resolvePosix (Function)
- resolveWindows (Function)
- sep (Constant)
- sep_posix (Constant)
- sep_str (Constant)
- sep_str_posix (Constant)
- sep_str_windows (Constant)
- sep_windows (Constant)
- stem (Function)
- windowsParsePath (Function)
- WindowsPath (struct)
Source
//! POSIX paths are arbitrary sequences of `u8` with no particular encoding.
//!
//! Windows paths are arbitrary sequences of `u16` (WTF-16).
//! For cross-platform APIs that deal with sequences of `u8`, Windows
//! paths are encoded by Zig as [WTF-8](https://simonsapin.github.io/wtf-8/).
//! WTF-8 is a superset of UTF-8 that allows encoding surrogate codepoints,
//! which enables lossless roundtripping when converting to/from WTF-16
//! (as long as the WTF-8 encoded surrogate codepoints do not form a pair).
//!
//! WASI paths are sequences of valid Unicode scalar values,
//! which means that WASI is unable to handle paths that cannot be
//! encoded as well-formed UTF-8/UTF-16.
//! https://github.com/WebAssembly/wasi-filesystem/issues/17#issuecomment-1430639353
const builtin = @import("builtin");
const std = @import("../std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const ascii = std.ascii;
const Allocator = mem.Allocator;
const math = std.math;
const windows = std.os.windows;
const os = std.os;
const fs = std.fs;
const process = std.process;
const native_os = builtin.target.os.tag;
pub const sep_windows = '\\';
pub const sep_posix = '/';
pub const sep = switch (native_os) {
.windows, .uefi => sep_windows,
else => sep_posix,
};
pub const sep_str_windows = "\\";
pub const sep_str_posix = "/";
pub const sep_str = switch (native_os) {
.windows, .uefi => sep_str_windows,
else => sep_str_posix,
};
pub const delimiter_windows = ';';
pub const delimiter_posix = ':';
pub const delimiter = if (native_os == .windows) delimiter_windows else delimiter_posix;
/// Returns if the given byte is a valid path separator
pub fn isSep(byte: u8) bool {
return switch (native_os) {
.windows => byte == '/' or byte == '\\',
.uefi => byte == '\\',
else => byte == '/',
};
}
pub const PathType = enum {
windows,
uefi,
posix,
/// Returns true if `c` is a valid path separator for the `path_type`.
pub inline fn isSep(comptime path_type: PathType, comptime T: type, c: T) bool {
return switch (path_type) {
.windows => c == '/' or c == '\\',
.posix => c == '/',
.uefi => c == '\\',
};
}
};
/// This is different from mem.join in that the separator will not be repeated if
/// it is found at the end or beginning of a pair of consecutive paths.
fn joinSepMaybeZ(allocator: Allocator, separator: u8, comptime sepPredicate: fn (u8) bool, paths: []const []const u8, zero: bool) ![]u8 {
if (paths.len == 0) return if (zero) try allocator.dupe(u8, &[1]u8{0}) else &[0]u8{};
// Find first non-empty path index.
const first_path_index = blk: {
for (paths, 0..) |path, index| {
if (path.len == 0) continue else break :blk index;
}
// All paths provided were empty, so return early.
return if (zero) try allocator.dupe(u8, &[1]u8{0}) else &[0]u8{};
};
// Calculate length needed for resulting joined path buffer.
const total_len = blk: {
var sum: usize = paths[first_path_index].len;
var prev_path = paths[first_path_index];
assert(prev_path.len > 0);
var i: usize = first_path_index + 1;
while (i < paths.len) : (i += 1) {
const this_path = paths[i];
if (this_path.len == 0) continue;
const prev_sep = sepPredicate(prev_path[prev_path.len - 1]);
const this_sep = sepPredicate(this_path[0]);
sum += @intFromBool(!prev_sep and !this_sep);
sum += if (prev_sep and this_sep) this_path.len - 1 else this_path.len;
prev_path = this_path;
}
if (zero) sum += 1;
break :blk sum;
};
const buf = try allocator.alloc(u8, total_len);
errdefer allocator.free(buf);
@memcpy(buf[0..paths[first_path_index].len], paths[first_path_index]);
var buf_index: usize = paths[first_path_index].len;
var prev_path = paths[first_path_index];
assert(prev_path.len > 0);
var i: usize = first_path_index + 1;
while (i < paths.len) : (i += 1) {
const this_path = paths[i];
if (this_path.len == 0) continue;
const prev_sep = sepPredicate(prev_path[prev_path.len - 1]);
const this_sep = sepPredicate(this_path[0]);
if (!prev_sep and !this_sep) {
buf[buf_index] = separator;
buf_index += 1;
}
const adjusted_path = if (prev_sep and this_sep) this_path[1..] else this_path;
@memcpy(buf[buf_index..][0..adjusted_path.len], adjusted_path);
buf_index += adjusted_path.len;
prev_path = this_path;
}
if (zero) buf[buf.len - 1] = 0;
// No need for shrink since buf is exactly the correct size.
return buf;
}
/// Naively combines a series of paths with the native path separator.
/// Allocates memory for the result, which must be freed by the caller.
pub fn join(allocator: Allocator, paths: []const []const u8) ![]u8 {
return joinSepMaybeZ(allocator, sep, isSep, paths, false);
}
/// Naively combines a series of paths with the native path separator and null terminator.
/// Allocates memory for the result, which must be freed by the caller.
pub fn joinZ(allocator: Allocator, paths: []const []const u8) ![:0]u8 {
const out = try joinSepMaybeZ(allocator, sep, isSep, paths, true);
return out[0 .. out.len - 1 :0];
}
pub fn fmtJoin(paths: []const []const u8) std.fmt.Formatter(formatJoin) {
return .{ .data = paths };
}
fn formatJoin(paths: []const []const u8, comptime fmt: []const u8, options: std.fmt.FormatOptions, w: anytype) !void {
_ = fmt;
_ = options;
const first_path_idx = for (paths, 0..) |p, idx| {
if (p.len != 0) break idx;
} else return;
try w.writeAll(paths[first_path_idx]); // first component
var prev_path = paths[first_path_idx];
for (paths[first_path_idx + 1 ..]) |this_path| {
if (this_path.len == 0) continue; // skip empty components
const prev_sep = isSep(prev_path[prev_path.len - 1]);
const this_sep = isSep(this_path[0]);
if (!prev_sep and !this_sep) {
try w.writeByte(sep);
}
if (prev_sep and this_sep) {
try w.writeAll(this_path[1..]); // skip redundant separator
} else {
try w.writeAll(this_path);
}
prev_path = this_path;
}
}
fn testJoinMaybeZUefi(paths: []const []const u8, expected: []const u8, zero: bool) !void {
const uefiIsSep = struct {
fn isSep(byte: u8) bool {
return byte == '\\';
}
}.isSep;
const actual = try joinSepMaybeZ(testing.allocator, sep_windows, uefiIsSep, paths, zero);
defer testing.allocator.free(actual);
try testing.expectEqualSlices(u8, expected, if (zero) actual[0 .. actual.len - 1 :0] else actual);
}
fn testJoinMaybeZWindows(paths: []const []const u8, expected: []const u8, zero: bool) !void {
const windowsIsSep = struct {
fn isSep(byte: u8) bool {
return byte == '/' or byte == '\\';
}
}.isSep;
const actual = try joinSepMaybeZ(testing.allocator, sep_windows, windowsIsSep, paths, zero);
defer testing.allocator.free(actual);
try testing.expectEqualSlices(u8, expected, if (zero) actual[0 .. actual.len - 1 :0] else actual);
}
fn testJoinMaybeZPosix(paths: []const []const u8, expected: []const u8, zero: bool) !void {
const posixIsSep = struct {
fn isSep(byte: u8) bool {
return byte == '/';
}
}.isSep;
const actual = try joinSepMaybeZ(testing.allocator, sep_posix, posixIsSep, paths, zero);
defer testing.allocator.free(actual);
try testing.expectEqualSlices(u8, expected, if (zero) actual[0 .. actual.len - 1 :0] else actual);
}
test join {
{
const actual: []u8 = try join(testing.allocator, &[_][]const u8{});
defer testing.allocator.free(actual);
try testing.expectEqualSlices(u8, "", actual);
}
{
const actual: [:0]u8 = try joinZ(testing.allocator, &[_][]const u8{});
defer testing.allocator.free(actual);
try testing.expectEqualSlices(u8, "", actual);
}
for (&[_]bool{ false, true }) |zero| {
try testJoinMaybeZWindows(&[_][]const u8{}, "", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\a\\b", "c" }, "c:\\a\\b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\a\\b", "c" }, "c:\\a\\b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\a\\b\\", "c" }, "c:\\a\\b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\", "a", "b\\", "c" }, "c:\\a\\b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\a\\", "b\\", "c" }, "c:\\a\\b\\c", zero);
try testJoinMaybeZWindows(
&[_][]const u8{ "c:\\home\\andy\\dev\\zig\\build\\lib\\zig\\std", "io.zig" },
"c:\\home\\andy\\dev\\zig\\build\\lib\\zig\\std\\io.zig",
zero,
);
try testJoinMaybeZUefi(&[_][]const u8{ "EFI", "Boot", "bootx64.efi" }, "EFI\\Boot\\bootx64.efi", zero);
try testJoinMaybeZUefi(&[_][]const u8{ "EFI\\Boot", "bootx64.efi" }, "EFI\\Boot\\bootx64.efi", zero);
try testJoinMaybeZUefi(&[_][]const u8{ "EFI\\", "\\Boot", "bootx64.efi" }, "EFI\\Boot\\bootx64.efi", zero);
try testJoinMaybeZUefi(&[_][]const u8{ "EFI\\", "\\Boot\\", "\\bootx64.efi" }, "EFI\\Boot\\bootx64.efi", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\", "a", "b/", "c" }, "c:\\a\\b/c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\a/", "b\\", "/c" }, "c:\\a/b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "", "c:\\", "", "", "a", "b\\", "c", "" }, "c:\\a\\b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "c:\\a/", "", "b\\", "", "/c" }, "c:\\a/b\\c", zero);
try testJoinMaybeZWindows(&[_][]const u8{ "", "" }, "", zero);
try testJoinMaybeZPosix(&[_][]const u8{}, "", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "/a/b", "c" }, "/a/b/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "/a/b/", "c" }, "/a/b/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "/", "a", "b/", "c" }, "/a/b/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "/a/", "b/", "c" }, "/a/b/c", zero);
try testJoinMaybeZPosix(
&[_][]const u8{ "/home/andy/dev/zig/build/lib/zig/std", "io.zig" },
"/home/andy/dev/zig/build/lib/zig/std/io.zig",
zero,
);
try testJoinMaybeZPosix(&[_][]const u8{ "a", "/c" }, "a/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "a/", "/c" }, "a/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "", "/", "a", "", "b/", "c", "" }, "/a/b/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "/a/", "", "", "b/", "c" }, "/a/b/c", zero);
try testJoinMaybeZPosix(&[_][]const u8{ "", "" }, "", zero);
}
}
pub fn isAbsoluteZ(path_c: [*:0]const u8) bool {
if (native_os == .windows) {
return isAbsoluteWindowsZ(path_c);
} else {
return isAbsolutePosixZ(path_c);
}
}
pub fn isAbsolute(path: []const u8) bool {
if (native_os == .windows) {
return isAbsoluteWindows(path);
} else {
return isAbsolutePosix(path);
}
}
fn isAbsoluteWindowsImpl(comptime T: type, path: []const T) bool {
if (path.len < 1)
return false;
if (path[0] == '/')
return true;
if (path[0] == '\\')
return true;
if (path.len < 3)
return false;
if (path[1] == ':') {
if (path[2] == '/')
return true;
if (path[2] == '\\')
return true;
}
return false;
}
pub fn isAbsoluteWindows(path: []const u8) bool {
return isAbsoluteWindowsImpl(u8, path);
}
pub fn isAbsoluteWindowsW(path_w: [*:0]const u16) bool {
return isAbsoluteWindowsImpl(u16, mem.sliceTo(path_w, 0));
}
pub fn isAbsoluteWindowsWTF16(path: []const u16) bool {
return isAbsoluteWindowsImpl(u16, path);
}
pub fn isAbsoluteWindowsZ(path_c: [*:0]const u8) bool {
return isAbsoluteWindowsImpl(u8, mem.sliceTo(path_c, 0));
}
pub fn isAbsolutePosix(path: []const u8) bool {
return path.len > 0 and path[0] == sep_posix;
}
pub fn isAbsolutePosixZ(path_c: [*:0]const u8) bool {
return isAbsolutePosix(mem.sliceTo(path_c, 0));
}
test isAbsoluteWindows {
try testIsAbsoluteWindows("", false);
try testIsAbsoluteWindows("/", true);
try testIsAbsoluteWindows("//", true);
try testIsAbsoluteWindows("//server", true);
try testIsAbsoluteWindows("//server/file", true);
try testIsAbsoluteWindows("\\\\server\\file", true);
try testIsAbsoluteWindows("\\\\server", true);
try testIsAbsoluteWindows("\\\\", true);
try testIsAbsoluteWindows("c", false);
try testIsAbsoluteWindows("c:", false);
try testIsAbsoluteWindows("c:\\", true);
try testIsAbsoluteWindows("c:/", true);
try testIsAbsoluteWindows("c://", true);
try testIsAbsoluteWindows("C:/Users/", true);
try testIsAbsoluteWindows("C:\\Users\\", true);
try testIsAbsoluteWindows("C:cwd/another", false);
try testIsAbsoluteWindows("C:cwd\\another", false);
try testIsAbsoluteWindows("directory/directory", false);
try testIsAbsoluteWindows("directory\\directory", false);
try testIsAbsoluteWindows("/usr/local", true);
}
test isAbsolutePosix {
try testIsAbsolutePosix("", false);
try testIsAbsolutePosix("/home/foo", true);
try testIsAbsolutePosix("/home/foo/..", true);
try testIsAbsolutePosix("bar/", false);
try testIsAbsolutePosix("./baz", false);
}
fn testIsAbsoluteWindows(path: []const u8, expected_result: bool) !void {
try testing.expectEqual(expected_result, isAbsoluteWindows(path));
}
fn testIsAbsolutePosix(path: []const u8, expected_result: bool) !void {
try testing.expectEqual(expected_result, isAbsolutePosix(path));
}
pub const WindowsPath = struct {
is_abs: bool,
kind: Kind,
disk_designator: []const u8,
pub const Kind = enum {
None,
Drive,
NetworkShare,
};
};
pub fn windowsParsePath(path: []const u8) WindowsPath {
if (path.len >= 2 and path[1] == ':') {
return WindowsPath{
.is_abs = isAbsoluteWindows(path),
.kind = WindowsPath.Kind.Drive,
.disk_designator = path[0..2],
};
}
if (path.len >= 1 and (path[0] == '/' or path[0] == '\\') and
(path.len == 1 or (path[1] != '/' and path[1] != '\\')))
{
return WindowsPath{
.is_abs = true,
.kind = WindowsPath.Kind.None,
.disk_designator = path[0..0],
};
}
const relative_path = WindowsPath{
.kind = WindowsPath.Kind.None,
.disk_designator = &[_]u8{},
.is_abs = false,
};
if (path.len < "//a/b".len) {
return relative_path;
}
inline for ("/\\") |this_sep| {
const two_sep = [_]u8{ this_sep, this_sep };
if (mem.startsWith(u8, path, &two_sep)) {
if (path[2] == this_sep) {
return relative_path;
}
var it = mem.tokenizeScalar(u8, path, this_sep);
_ = (it.next() orelse return relative_path);
_ = (it.next() orelse return relative_path);
return WindowsPath{
.is_abs = isAbsoluteWindows(path),
.kind = WindowsPath.Kind.NetworkShare,
.disk_designator = path[0..it.index],
};
}
}
return relative_path;
}
test windowsParsePath {
{
const parsed = windowsParsePath("//a/b");
try testing.expect(parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.NetworkShare);
try testing.expect(mem.eql(u8, parsed.disk_designator, "//a/b"));
}
{
const parsed = windowsParsePath("\\\\a\\b");
try testing.expect(parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.NetworkShare);
try testing.expect(mem.eql(u8, parsed.disk_designator, "\\\\a\\b"));
}
{
const parsed = windowsParsePath("\\\\a\\");
try testing.expect(!parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.None);
try testing.expect(mem.eql(u8, parsed.disk_designator, ""));
}
{
const parsed = windowsParsePath("/usr/local");
try testing.expect(parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.None);
try testing.expect(mem.eql(u8, parsed.disk_designator, ""));
}
{
const parsed = windowsParsePath("c:../");
try testing.expect(!parsed.is_abs);
try testing.expect(parsed.kind == WindowsPath.Kind.Drive);
try testing.expect(mem.eql(u8, parsed.disk_designator, "c:"));
}
}
pub fn diskDesignator(path: []const u8) []const u8 {
if (native_os == .windows) {
return diskDesignatorWindows(path);
} else {
return "";
}
}
pub fn diskDesignatorWindows(path: []const u8) []const u8 {
return windowsParsePath(path).disk_designator;
}
fn networkShareServersEql(ns1: []const u8, ns2: []const u8) bool {
const sep1 = ns1[0];
const sep2 = ns2[0];
var it1 = mem.tokenizeScalar(u8, ns1, sep1);
var it2 = mem.tokenizeScalar(u8, ns2, sep2);
return windows.eqlIgnoreCaseWtf8(it1.next().?, it2.next().?);
}
fn compareDiskDesignators(kind: WindowsPath.Kind, p1: []const u8, p2: []const u8) bool {
switch (kind) {
WindowsPath.Kind.None => {
assert(p1.len == 0);
assert(p2.len == 0);
return true;
},
WindowsPath.Kind.Drive => {
return ascii.toUpper(p1[0]) == ascii.toUpper(p2[0]);
},
WindowsPath.Kind.NetworkShare => {
const sep1 = p1[0];
const sep2 = p2[0];
var it1 = mem.tokenizeScalar(u8, p1, sep1);
var it2 = mem.tokenizeScalar(u8, p2, sep2);
return windows.eqlIgnoreCaseWtf8(it1.next().?, it2.next().?) and windows.eqlIgnoreCaseWtf8(it1.next().?, it2.next().?);
},
}
}
/// On Windows, this calls `resolveWindows` and on POSIX it calls `resolvePosix`.
pub fn resolve(allocator: Allocator, paths: []const []const u8) ![]u8 {
if (native_os == .windows) {
return resolveWindows(allocator, paths);
} else {
return resolvePosix(allocator, paths);
}
}
/// This function is like a series of `cd` statements executed one after another.
/// It resolves "." and "..", but will not convert relative path to absolute path, use std.fs.Dir.realpath instead.
/// The result does not have a trailing path separator.
/// Each drive has its own current working directory.
/// Path separators are canonicalized to '\\' and drives are canonicalized to capital letters.
/// Note: all usage of this function should be audited due to the existence of symlinks.
/// Without performing actual syscalls, resolving `..` could be incorrect.
/// This API may break in the future: https://github.com/ziglang/zig/issues/13613
pub fn resolveWindows(allocator: Allocator, paths: []const []const u8) ![]u8 {
assert(paths.len > 0);
// determine which disk designator we will result with, if any
var result_drive_buf = "_:".*;
var disk_designator: []const u8 = "";
var drive_kind = WindowsPath.Kind.None;
var have_abs_path = false;
var first_index: usize = 0;
for (paths, 0..) |p, i| {
const parsed = windowsParsePath(p);
if (parsed.is_abs) {
have_abs_path = true;
first_index = i;
}
switch (parsed.kind) {
.Drive => {
result_drive_buf[0] = ascii.toUpper(parsed.disk_designator[0]);
disk_designator = result_drive_buf[0..];
drive_kind = WindowsPath.Kind.Drive;
},
.NetworkShare => {
disk_designator = parsed.disk_designator;
drive_kind = WindowsPath.Kind.NetworkShare;
},
.None => {},
}
}
// if we will result with a disk designator, loop again to determine
// which is the last time the disk designator is absolutely specified, if any
// and count up the max bytes for paths related to this disk designator
if (drive_kind != WindowsPath.Kind.None) {
have_abs_path = false;
first_index = 0;
var correct_disk_designator = false;
for (paths, 0..) |p, i| {
const parsed = windowsParsePath(p);
if (parsed.kind != WindowsPath.Kind.None) {
if (parsed.kind == drive_kind) {
correct_disk_designator = compareDiskDesignators(drive_kind, disk_designator, parsed.disk_designator);
} else {
continue;
}
}
if (!correct_disk_designator) {
continue;
}
if (parsed.is_abs) {
first_index = i;
have_abs_path = true;
}
}
}
// Allocate result and fill in the disk designator.
var result = std.ArrayList(u8).init(allocator);
defer result.deinit();
const disk_designator_len: usize = l: {
if (!have_abs_path) break :l 0;
switch (drive_kind) {
.Drive => {
try result.appendSlice(disk_designator);
break :l disk_designator.len;
},
.NetworkShare => {
var it = mem.tokenizeAny(u8, paths[first_index], "/\\");
const server_name = it.next().?;
const other_name = it.next().?;
try result.ensureUnusedCapacity(2 + 1 + server_name.len + other_name.len);
result.appendSliceAssumeCapacity("\\\\");
result.appendSliceAssumeCapacity(server_name);
result.appendAssumeCapacity('\\');
result.appendSliceAssumeCapacity(other_name);
break :l result.items.len;
},
.None => {
break :l 1;
},
}
};
var correct_disk_designator = true;
var negative_count: usize = 0;
for (paths[first_index..]) |p| {
const parsed = windowsParsePath(p);
if (parsed.kind != .None) {
if (parsed.kind == drive_kind) {
const dd = result.items[0..disk_designator_len];
correct_disk_designator = compareDiskDesignators(drive_kind, dd, parsed.disk_designator);
} else {
continue;
}
}
if (!correct_disk_designator) {
continue;
}
var it = mem.tokenizeAny(u8, p[parsed.disk_designator.len..], "/\\");
while (it.next()) |component| {
if (mem.eql(u8, component, ".")) {
continue;
} else if (mem.eql(u8, component, "..")) {
if (result.items.len == 0) {
negative_count += 1;
continue;
}
while (true) {
if (result.items.len == disk_designator_len) {
break;
}
const end_with_sep = switch (result.items[result.items.len - 1]) {
'\\', '/' => true,
else => false,
};
result.items.len -= 1;
if (end_with_sep or result.items.len == 0) break;
}
} else if (!have_abs_path and result.items.len == 0) {
try result.appendSlice(component);
} else {
try result.ensureUnusedCapacity(1 + component.len);
result.appendAssumeCapacity('\\');
result.appendSliceAssumeCapacity(component);
}
}
}
if (disk_designator_len != 0 and result.items.len == disk_designator_len) {
try result.append('\\');
return result.toOwnedSlice();
}
if (result.items.len == 0) {
if (negative_count == 0) {
return allocator.dupe(u8, ".");
} else {
const real_result = try allocator.alloc(u8, 3 * negative_count - 1);
var count = negative_count - 1;
var i: usize = 0;
while (count > 0) : (count -= 1) {
real_result[i..][0..3].* = "..\\".*;
i += 3;
}
real_result[i..][0..2].* = "..".*;
return real_result;
}
}
if (negative_count == 0) {
return result.toOwnedSlice();
} else {
const real_result = try allocator.alloc(u8, 3 * negative_count + result.items.len);
var count = negative_count;
var i: usize = 0;
while (count > 0) : (count -= 1) {
real_result[i..][0..3].* = "..\\".*;
i += 3;
}
@memcpy(real_result[i..][0..result.items.len], result.items);
return real_result;
}
}
/// This function is like a series of `cd` statements executed one after another.
/// It resolves "." and "..", but will not convert relative path to absolute path, use std.fs.Dir.realpath instead.
/// The result does not have a trailing path separator.
/// This function does not perform any syscalls. Executing this series of path
/// lookups on the actual filesystem may produce different results due to
/// symlinks.
pub fn resolvePosix(allocator: Allocator, paths: []const []const u8) Allocator.Error![]u8 {
assert(paths.len > 0);
var result = std.ArrayList(u8).init(allocator);
defer result.deinit();
var negative_count: usize = 0;
var is_abs = false;
for (paths) |p| {
if (isAbsolutePosix(p)) {
is_abs = true;
negative_count = 0;
result.clearRetainingCapacity();
}
var it = mem.tokenizeScalar(u8, p, '/');
while (it.next()) |component| {
if (mem.eql(u8, component, ".")) {
continue;
} else if (mem.eql(u8, component, "..")) {
if (result.items.len == 0) {
negative_count += @intFromBool(!is_abs);
continue;
}
while (true) {
const ends_with_slash = result.items[result.items.len - 1] == '/';
result.items.len -= 1;
if (ends_with_slash or result.items.len == 0) break;
}
} else if (result.items.len > 0 or is_abs) {
try result.ensureUnusedCapacity(1 + component.len);
result.appendAssumeCapacity('/');
result.appendSliceAssumeCapacity(component);
} else {
try result.appendSlice(component);
}
}
}
if (result.items.len == 0) {
if (is_abs) {
return allocator.dupe(u8, "/");
}
if (negative_count == 0) {
return allocator.dupe(u8, ".");
} else {
const real_result = try allocator.alloc(u8, 3 * negative_count - 1);
var count = negative_count - 1;
var i: usize = 0;
while (count > 0) : (count -= 1) {
real_result[i..][0..3].* = "../".*;
i += 3;
}
real_result[i..][0..2].* = "..".*;
return real_result;
}
}
if (negative_count == 0) {
return result.toOwnedSlice();
} else {
const real_result = try allocator.alloc(u8, 3 * negative_count + result.items.len);
var count = negative_count;
var i: usize = 0;
while (count > 0) : (count -= 1) {
real_result[i..][0..3].* = "../".*;
i += 3;
}
@memcpy(real_result[i..][0..result.items.len], result.items);
return real_result;
}
}
test resolve {
try testResolveWindows(&[_][]const u8{ "a\\b\\c\\", "..\\..\\.." }, ".");
try testResolveWindows(&[_][]const u8{"."}, ".");
try testResolveWindows(&[_][]const u8{""}, ".");
try testResolvePosix(&[_][]const u8{ "a/b/c/", "../../.." }, ".");
try testResolvePosix(&[_][]const u8{"."}, ".");
try testResolvePosix(&[_][]const u8{""}, ".");
}
test resolveWindows {
try testResolveWindows(
&[_][]const u8{ "Z:\\", "/usr/local", "lib\\zig\\std\\array_list.zig" },
"Z:\\usr\\local\\lib\\zig\\std\\array_list.zig",
);
try testResolveWindows(
&[_][]const u8{ "z:\\", "usr/local", "lib\\zig" },
"Z:\\usr\\local\\lib\\zig",
);
try testResolveWindows(&[_][]const u8{ "c:\\a\\b\\c", "/hi", "ok" }, "C:\\hi\\ok");
try testResolveWindows(&[_][]const u8{ "c:/blah\\blah", "d:/games", "c:../a" }, "C:\\blah\\a");
try testResolveWindows(&[_][]const u8{ "c:/blah\\blah", "d:/games", "C:../a" }, "C:\\blah\\a");
try testResolveWindows(&[_][]const u8{ "c:/ignore", "d:\\a/b\\c/d", "\\e.exe" }, "D:\\e.exe");
try testResolveWindows(&[_][]const u8{ "c:/ignore", "c:/some/file" }, "C:\\some\\file");
try testResolveWindows(&[_][]const u8{ "d:/ignore", "d:some/dir//" }, "D:\\ignore\\some\\dir");
try testResolveWindows(&[_][]const u8{ "//server/share", "..", "relative\\" }, "\\\\server\\share\\relative");
try testResolveWindows(&[_][]const u8{ "c:/", "//" }, "C:\\");
try testResolveWindows(&[_][]const u8{ "c:/", "//dir" }, "C:\\dir");
try testResolveWindows(&[_][]const u8{ "c:/", "//server/share" }, "\\\\server\\share\\");
try testResolveWindows(&[_][]const u8{ "c:/", "//server//share" }, "\\\\server\\share\\");
try testResolveWindows(&[_][]const u8{ "c:/", "///some//dir" }, "C:\\some\\dir");
try testResolveWindows(&[_][]const u8{ "C:\\foo\\tmp.3\\", "..\\tmp.3\\cycles\\root.js" }, "C:\\foo\\tmp.3\\cycles\\root.js");
// Keep relative paths relative.
try testResolveWindows(&[_][]const u8{"a/b"}, "a\\b");
}
test resolvePosix {
try testResolvePosix(&.{ "/a/b", "c" }, "/a/b/c");
try testResolvePosix(&.{ "/a/b", "c", "//d", "e///" }, "/d/e");
try testResolvePosix(&.{ "/a/b/c", "..", "../" }, "/a");
try testResolvePosix(&.{ "/", "..", ".." }, "/");
try testResolvePosix(&.{"/a/b/c/"}, "/a/b/c");
try testResolvePosix(&.{ "/var/lib", "../", "file/" }, "/var/file");
try testResolvePosix(&.{ "/var/lib", "/../", "file/" }, "/file");
try testResolvePosix(&.{ "/some/dir", ".", "/absolute/" }, "/absolute");
try testResolvePosix(&.{ "/foo/tmp.3/", "../tmp.3/cycles/root.js" }, "/foo/tmp.3/cycles/root.js");
// Keep relative paths relative.
try testResolvePosix(&.{"a/b"}, "a/b");
try testResolvePosix(&.{"."}, ".");
try testResolvePosix(&.{ ".", "src/test.zig", "..", "../test/cases.zig" }, "test/cases.zig");
}
fn testResolveWindows(paths: []const []const u8, expected: []const u8) !void {
const actual = try resolveWindows(testing.allocator, paths);
defer testing.allocator.free(actual);
try testing.expectEqualStrings(expected, actual);
}
fn testResolvePosix(paths: []const []const u8, expected: []const u8) !void {
const actual = try resolvePosix(testing.allocator, paths);
defer testing.allocator.free(actual);
try testing.expectEqualStrings(expected, actual);
}
/// Strip the last component from a file path.
///
/// If the path is a file in the current directory (no directory component)
/// then returns null.
///
/// If the path is the root directory, returns null.
pub fn dirname(path: []const u8) ?[]const u8 {
if (native_os == .windows) {
return dirnameWindows(path);
} else {
return dirnamePosix(path);
}
}
pub fn dirnameWindows(path: []const u8) ?[]const u8 {
if (path.len == 0)
return null;
const root_slice = diskDesignatorWindows(path);
if (path.len == root_slice.len)
return null;
const have_root_slash = path.len > root_slice.len and (path[root_slice.len] == '/' or path[root_slice.len] == '\\');
var end_index: usize = path.len - 1;
while (path[end_index] == '/' or path[end_index] == '\\') {
if (end_index == 0)
return null;
end_index -= 1;
}
while (path[end_index] != '/' and path[end_index] != '\\') {
if (end_index == 0)
return null;
end_index -= 1;
}
if (have_root_slash and end_index == root_slice.len) {
end_index += 1;
}
if (end_index == 0)
return null;
return path[0..end_index];
}
pub fn dirnamePosix(path: []const u8) ?[]const u8 {
if (path.len == 0)
return null;
var end_index: usize = path.len - 1;
while (path[end_index] == '/') {
if (end_index == 0)
return null;
end_index -= 1;
}
while (path[end_index] != '/') {
if (end_index == 0)
return null;
end_index -= 1;
}
if (end_index == 0 and path[0] == '/')
return path[0..1];
if (end_index == 0)
return null;
return path[0..end_index];
}
test dirnamePosix {
try testDirnamePosix("/a/b/c", "/a/b");
try testDirnamePosix("/a/b/c///", "/a/b");
try testDirnamePosix("/a", "/");
try testDirnamePosix("/", null);
try testDirnamePosix("//", null);
try testDirnamePosix("///", null);
try testDirnamePosix("////", null);
try testDirnamePosix("", null);
try testDirnamePosix("a", null);
try testDirnamePosix("a/", null);
try testDirnamePosix("a//", null);
}
test dirnameWindows {
try testDirnameWindows("c:\\", null);
try testDirnameWindows("c:\\foo", "c:\\");
try testDirnameWindows("c:\\foo\\", "c:\\");
try testDirnameWindows("c:\\foo\\bar", "c:\\foo");
try testDirnameWindows("c:\\foo\\bar\\", "c:\\foo");
try testDirnameWindows("c:\\foo\\bar\\baz", "c:\\foo\\bar");
try testDirnameWindows("\\", null);
try testDirnameWindows("\\foo", "\\");
try testDirnameWindows("\\foo\\", "\\");
try testDirnameWindows("\\foo\\bar", "\\foo");
try testDirnameWindows("\\foo\\bar\\", "\\foo");
try testDirnameWindows("\\foo\\bar\\baz", "\\foo\\bar");
try testDirnameWindows("c:", null);
try testDirnameWindows("c:foo", null);
try testDirnameWindows("c:foo\\", null);
try testDirnameWindows("c:foo\\bar", "c:foo");
try testDirnameWindows("c:foo\\bar\\", "c:foo");
try testDirnameWindows("c:foo\\bar\\baz", "c:foo\\bar");
try testDirnameWindows("file:stream", null);
try testDirnameWindows("dir\\file:stream", "dir");
try testDirnameWindows("\\\\unc\\share", null);
try testDirnameWindows("\\\\unc\\share\\foo", "\\\\unc\\share\\");
try testDirnameWindows("\\\\unc\\share\\foo\\", "\\\\unc\\share\\");
try testDirnameWindows("\\\\unc\\share\\foo\\bar", "\\\\unc\\share\\foo");
try testDirnameWindows("\\\\unc\\share\\foo\\bar\\", "\\\\unc\\share\\foo");
try testDirnameWindows("\\\\unc\\share\\foo\\bar\\baz", "\\\\unc\\share\\foo\\bar");
try testDirnameWindows("/a/b/", "/a");
try testDirnameWindows("/a/b", "/a");
try testDirnameWindows("/a", "/");
try testDirnameWindows("", null);
try testDirnameWindows("/", null);
try testDirnameWindows("////", null);
try testDirnameWindows("foo", null);
}
fn testDirnamePosix(input: []const u8, expected_output: ?[]const u8) !void {
if (dirnamePosix(input)) |output| {
try testing.expect(mem.eql(u8, output, expected_output.?));
} else {
try testing.expect(expected_output == null);
}
}
fn testDirnameWindows(input: []const u8, expected_output: ?[]const u8) !void {
if (dirnameWindows(input)) |output| {
try testing.expect(mem.eql(u8, output, expected_output.?));
} else {
try testing.expect(expected_output == null);
}
}
pub fn basename(path: []const u8) []const u8 {
if (native_os == .windows) {
return basenameWindows(path);
} else {
return basenamePosix(path);
}
}
pub fn basenamePosix(path: []const u8) []const u8 {
if (path.len == 0)
return &[_]u8{};
var end_index: usize = path.len - 1;
while (path[end_index] == '/') {
if (end_index == 0)
return &[_]u8{};
end_index -= 1;
}
var start_index: usize = end_index;
end_index += 1;
while (path[start_index] != '/') {
if (start_index == 0)
return path[0..end_index];
start_index -= 1;
}
return path[start_index + 1 .. end_index];
}
pub fn basenameWindows(path: []const u8) []const u8 {
if (path.len == 0)
return &[_]u8{};
var end_index: usize = path.len - 1;
while (true) {
const byte = path[end_index];
if (byte == '/' or byte == '\\') {
if (end_index == 0)
return &[_]u8{};
end_index -= 1;
continue;
}
if (byte == ':' and end_index == 1) {
return &[_]u8{};
}
break;
}
var start_index: usize = end_index;
end_index += 1;
while (path[start_index] != '/' and path[start_index] != '\\' and
!(path[start_index] == ':' and start_index == 1))
{
if (start_index == 0)
return path[0..end_index];
start_index -= 1;
}
return path[start_index + 1 .. end_index];
}
test basename {
try testBasename("", "");
try testBasename("/", "");
try testBasename("/dir/basename.ext", "basename.ext");
try testBasename("/basename.ext", "basename.ext");
try testBasename("basename.ext", "basename.ext");
try testBasename("basename.ext/", "basename.ext");
try testBasename("basename.ext//", "basename.ext");
try testBasename("/aaa/bbb", "bbb");
try testBasename("/aaa/", "aaa");
try testBasename("/aaa/b", "b");
try testBasename("/a/b", "b");
try testBasename("//a", "a");
try testBasenamePosix("\\dir\\basename.ext", "\\dir\\basename.ext");
try testBasenamePosix("\\basename.ext", "\\basename.ext");
try testBasenamePosix("basename.ext", "basename.ext");
try testBasenamePosix("basename.ext\\", "basename.ext\\");
try testBasenamePosix("basename.ext\\\\", "basename.ext\\\\");
try testBasenamePosix("foo", "foo");
try testBasenameWindows("\\dir\\basename.ext", "basename.ext");
try testBasenameWindows("\\basename.ext", "basename.ext");
try testBasenameWindows("basename.ext", "basename.ext");
try testBasenameWindows("basename.ext\\", "basename.ext");
try testBasenameWindows("basename.ext\\\\", "basename.ext");
try testBasenameWindows("foo", "foo");
try testBasenameWindows("C:", "");
try testBasenameWindows("C:.", ".");
try testBasenameWindows("C:\\", "");
try testBasenameWindows("C:\\dir\\base.ext", "base.ext");
try testBasenameWindows("C:\\basename.ext", "basename.ext");
try testBasenameWindows("C:basename.ext", "basename.ext");
try testBasenameWindows("C:basename.ext\\", "basename.ext");
try testBasenameWindows("C:basename.ext\\\\", "basename.ext");
try testBasenameWindows("C:foo", "foo");
try testBasenameWindows("file:stream", "file:stream");
}
fn testBasename(input: []const u8, expected_output: []const u8) !void {
try testing.expectEqualSlices(u8, expected_output, basename(input));
}
fn testBasenamePosix(input: []const u8, expected_output: []const u8) !void {
try testing.expectEqualSlices(u8, expected_output, basenamePosix(input));
}
fn testBasenameWindows(input: []const u8, expected_output: []const u8) !void {
try testing.expectEqualSlices(u8, expected_output, basenameWindows(input));
}
/// Returns the relative path from `from` to `to`. If `from` and `to` each
/// resolve to the same path (after calling `resolve` on each), a zero-length
/// string is returned.
/// On Windows this canonicalizes the drive to a capital letter and paths to `\\`.
pub fn relative(allocator: Allocator, from: []const u8, to: []const u8) ![]u8 {
if (native_os == .windows) {
return relativeWindows(allocator, from, to);
} else {
return relativePosix(allocator, from, to);
}
}
pub fn relativeWindows(allocator: Allocator, from: []const u8, to: []const u8) ![]u8 {
const cwd = try process.getCwdAlloc(allocator);
defer allocator.free(cwd);
const resolved_from = try resolveWindows(allocator, &[_][]const u8{ cwd, from });
defer allocator.free(resolved_from);
var clean_up_resolved_to = true;
const resolved_to = try resolveWindows(allocator, &[_][]const u8{ cwd, to });
defer if (clean_up_resolved_to) allocator.free(resolved_to);
const parsed_from = windowsParsePath(resolved_from);
const parsed_to = windowsParsePath(resolved_to);
const result_is_to = x: {
if (parsed_from.kind != parsed_to.kind) {
break :x true;
} else switch (parsed_from.kind) {
.NetworkShare => {
break :x !networkShareServersEql(parsed_to.disk_designator, parsed_from.disk_designator);
},
.Drive => {
break :x ascii.toUpper(parsed_from.disk_designator[0]) != ascii.toUpper(parsed_to.disk_designator[0]);
},
.None => {
break :x false;
},
}
};
if (result_is_to) {
clean_up_resolved_to = false;
return resolved_to;
}
var from_it = mem.tokenizeAny(u8, resolved_from, "/\\");
var to_it = mem.tokenizeAny(u8, resolved_to, "/\\");
while (true) {
const from_component = from_it.next() orelse return allocator.dupe(u8, to_it.rest());
const to_rest = to_it.rest();
if (to_it.next()) |to_component| {
if (windows.eqlIgnoreCaseWtf8(from_component, to_component))
continue;
}
var up_index_end = "..".len;
while (from_it.next()) |_| {
up_index_end += "\\..".len;
}
const result = try allocator.alloc(u8, up_index_end + @intFromBool(to_rest.len > 0) + to_rest.len);
errdefer allocator.free(result);
result[0..2].* = "..".*;
var result_index: usize = 2;
while (result_index < up_index_end) {
result[result_index..][0..3].* = "\\..".*;
result_index += 3;
}
var rest_it = mem.tokenizeAny(u8, to_rest, "/\\");
while (rest_it.next()) |to_component| {
result[result_index] = '\\';
result_index += 1;
@memcpy(result[result_index..][0..to_component.len], to_component);
result_index += to_component.len;
}
return allocator.realloc(result, result_index);
}
return [_]u8{};
}
pub fn relativePosix(allocator: Allocator, from: []const u8, to: []const u8) ![]u8 {
const cwd = try process.getCwdAlloc(allocator);
defer allocator.free(cwd);
const resolved_from = try resolvePosix(allocator, &[_][]const u8{ cwd, from });
defer allocator.free(resolved_from);
const resolved_to = try resolvePosix(allocator, &[_][]const u8{ cwd, to });
defer allocator.free(resolved_to);
var from_it = mem.tokenizeScalar(u8, resolved_from, '/');
var to_it = mem.tokenizeScalar(u8, resolved_to, '/');
while (true) {
const from_component = from_it.next() orelse return allocator.dupe(u8, to_it.rest());
const to_rest = to_it.rest();
if (to_it.next()) |to_component| {
if (mem.eql(u8, from_component, to_component))
continue;
}
var up_count: usize = 1;
while (from_it.next()) |_| {
up_count += 1;
}
const up_index_end = up_count * "../".len;
const result = try allocator.alloc(u8, up_index_end + to_rest.len);
errdefer allocator.free(result);
var result_index: usize = 0;
while (result_index < up_index_end) {
result[result_index..][0..3].* = "../".*;
result_index += 3;
}
if (to_rest.len == 0) {
// shave off the trailing slash
return allocator.realloc(result, result_index - 1);
}
@memcpy(result[result_index..][0..to_rest.len], to_rest);
return result;
}
return [_]u8{};
}
test relative {
try testRelativeWindows("c:/blah\\blah", "d:/games", "D:\\games");
try testRelativeWindows("c:/aaaa/bbbb", "c:/aaaa", "..");
try testRelativeWindows("c:/aaaa/bbbb", "c:/cccc", "..\\..\\cccc");
try testRelativeWindows("c:/aaaa/bbbb", "C:/aaaa/bbbb", "");
try testRelativeWindows("c:/aaaa/bbbb", "c:/aaaa/cccc", "..\\cccc");
try testRelativeWindows("c:/aaaa/", "c:/aaaa/cccc", "cccc");
try testRelativeWindows("c:/", "c:\\aaaa\\bbbb", "aaaa\\bbbb");
try testRelativeWindows("c:/aaaa/bbbb", "d:\\", "D:\\");
try testRelativeWindows("c:/AaAa/bbbb", "c:/aaaa/bbbb", "");
try testRelativeWindows("c:/aaaaa/", "c:/aaaa/cccc", "..\\aaaa\\cccc");
try testRelativeWindows("C:\\foo\\bar\\baz\\quux", "C:\\", "..\\..\\..\\..");
try testRelativeWindows("C:\\foo\\test", "C:\\foo\\test\\bar\\package.json", "bar\\package.json");
try testRelativeWindows("C:\\foo\\bar\\baz-quux", "C:\\foo\\bar\\baz", "..\\baz");
try testRelativeWindows("C:\\foo\\bar\\baz", "C:\\foo\\bar\\baz-quux", "..\\baz-quux");
try testRelativeWindows("\\\\foo\\bar", "\\\\foo\\bar\\baz", "baz");
try testRelativeWindows("\\\\foo\\bar\\baz", "\\\\foo\\bar", "..");
try testRelativeWindows("\\\\foo\\bar\\baz-quux", "\\\\foo\\bar\\baz", "..\\baz");
try testRelativeWindows("\\\\foo\\bar\\baz", "\\\\foo\\bar\\baz-quux", "..\\baz-quux");
try testRelativeWindows("C:\\baz-quux", "C:\\baz", "..\\baz");
try testRelativeWindows("C:\\baz", "C:\\baz-quux", "..\\baz-quux");
try testRelativeWindows("\\\\foo\\baz-quux", "\\\\foo\\baz", "..\\baz");
try testRelativeWindows("\\\\foo\\baz", "\\\\foo\\baz-quux", "..\\baz-quux");
try testRelativeWindows("C:\\baz", "\\\\foo\\bar\\baz", "\\\\foo\\bar\\baz");
try testRelativeWindows("\\\\foo\\bar\\baz", "C:\\baz", "C:\\baz");
try testRelativeWindows("a/b/c", "a\\b", "..");
try testRelativeWindows("a/b/c", "a", "..\\..");
try testRelativeWindows("a/b/c", "a\\b\\c\\d", "d");
try testRelativeWindows("\\\\FOO\\bar\\baz", "\\\\foo\\BAR\\BAZ", "");
// Unicode-aware case-insensitive path comparison
try testRelativeWindows("\\\\кириллица\\ελληνικά\\português", "\\\\КИРИЛЛИЦА\\ΕΛΛΗΝΙΚΆ\\PORTUGUÊS", "");
try testRelativePosix("/var/lib", "/var", "..");
try testRelativePosix("/var/lib", "/bin", "../../bin");
try testRelativePosix("/var/lib", "/var/lib", "");
try testRelativePosix("/var/lib", "/var/apache", "../apache");
try testRelativePosix("/var/", "/var/lib", "lib");
try testRelativePosix("/", "/var/lib", "var/lib");
try testRelativePosix("/foo/test", "/foo/test/bar/package.json", "bar/package.json");
try testRelativePosix("/Users/a/web/b/test/mails", "/Users/a/web/b", "../..");
try testRelativePosix("/foo/bar/baz-quux", "/foo/bar/baz", "../baz");
try testRelativePosix("/foo/bar/baz", "/foo/bar/baz-quux", "../baz-quux");
try testRelativePosix("/baz-quux", "/baz", "../baz");
try testRelativePosix("/baz", "/baz-quux", "../baz-quux");
}
fn testRelativePosix(from: []const u8, to: []const u8, expected_output: []const u8) !void {
const result = try relativePosix(testing.allocator, from, to);
defer testing.allocator.free(result);
try testing.expectEqualStrings(expected_output, result);
}
fn testRelativeWindows(from: []const u8, to: []const u8, expected_output: []const u8) !void {
const result = try relativeWindows(testing.allocator, from, to);
defer testing.allocator.free(result);
try testing.expectEqualStrings(expected_output, result);
}
/// Searches for a file extension separated by a `.` and returns the string after that `.`.
/// Files that end or start with `.` and have no other `.` in their name
/// are considered to have no extension, in which case this returns "".
/// Examples:
/// - `"main.zig"` ⇒ `".zig"`
/// - `"src/main.zig"` ⇒ `".zig"`
/// - `".gitignore"` ⇒ `""`
/// - `".image.png"` ⇒ `".png"`
/// - `"keep."` ⇒ `"."`
/// - `"src.keep.me"` ⇒ `".me"`
/// - `"/src/keep.me"` ⇒ `".me"`
/// - `"/src/keep.me/"` ⇒ `".me"`
/// The returned slice is guaranteed to have its pointer within the start and end
/// pointer address range of `path`, even if it is length zero.
pub fn extension(path: []const u8) []const u8 {
const filename = basename(path);
const index = mem.lastIndexOfScalar(u8, filename, '.') orelse return path[path.len..];
if (index == 0) return path[path.len..];
return filename[index..];
}
fn testExtension(path: []const u8, expected: []const u8) !void {
try testing.expectEqualStrings(expected, extension(path));
}
test extension {
try testExtension("", "");
try testExtension(".", "");
try testExtension("a.", ".");
try testExtension("abc.", ".");
try testExtension(".a", "");
try testExtension(".file", "");
try testExtension(".gitignore", "");
try testExtension(".image.png", ".png");
try testExtension("file.ext", ".ext");
try testExtension("file.ext.", ".");
try testExtension("very-long-file.bruh", ".bruh");
try testExtension("a.b.c", ".c");
try testExtension("a.b.c/", ".c");
try testExtension("/", "");
try testExtension("/.", "");
try testExtension("/a.", ".");
try testExtension("/abc.", ".");
try testExtension("/.a", "");
try testExtension("/.file", "");
try testExtension("/.gitignore", "");
try testExtension("/file.ext", ".ext");
try testExtension("/file.ext.", ".");
try testExtension("/very-long-file.bruh", ".bruh");
try testExtension("/a.b.c", ".c");
try testExtension("/a.b.c/", ".c");
try testExtension("/foo/bar/bam/", "");
try testExtension("/foo/bar/bam/.", "");
try testExtension("/foo/bar/bam/a.", ".");
try testExtension("/foo/bar/bam/abc.", ".");
try testExtension("/foo/bar/bam/.a", "");
try testExtension("/foo/bar/bam/.file", "");
try testExtension("/foo/bar/bam/.gitignore", "");
try testExtension("/foo/bar/bam/file.ext", ".ext");
try testExtension("/foo/bar/bam/file.ext.", ".");
try testExtension("/foo/bar/bam/very-long-file.bruh", ".bruh");
try testExtension("/foo/bar/bam/a.b.c", ".c");
try testExtension("/foo/bar/bam/a.b.c/", ".c");
}
/// Returns the last component of this path without its extension (if any):
/// - "hello/world/lib.tar.gz" ⇒ "lib.tar"
/// - "hello/world/lib.tar" ⇒ "lib"
/// - "hello/world/lib" ⇒ "lib"
pub fn stem(path: []const u8) []const u8 {
const filename = basename(path);
const index = mem.lastIndexOfScalar(u8, filename, '.') orelse return filename[0..];
if (index == 0) return path;
return filename[0..index];
}
fn testStem(path: []const u8, expected: []const u8) !void {
try testing.expectEqualStrings(expected, stem(path));
}
test stem {
try testStem("hello/world/lib.tar.gz", "lib.tar");
try testStem("hello/world/lib.tar", "lib");
try testStem("hello/world/lib", "lib");
try testStem("hello/lib/", "lib");
try testStem("hello...", "hello..");
try testStem("hello.", "hello");
try testStem("/hello.", "hello");
try testStem(".gitignore", ".gitignore");
try testStem(".image.png", ".image");
try testStem("file.ext", "file");
try testStem("file.ext.", "file.ext");
try testStem("a.b.c", "a.b");
try testStem("a.b.c/", "a.b");
try testStem(".a", ".a");
try testStem("///", "");
try testStem("..", ".");
try testStem(".", ".");
try testStem(" ", " ");
try testStem("", "");
}
/// A path component iterator that can move forwards and backwards.
/// The 'root' of the path (`/` for POSIX, things like `C:\`, `\\server\share\`, etc
/// for Windows) is treated specially and will never be returned by any of the
/// `first`, `last`, `next`, or `previous` functions.
/// Multiple consecutive path separators are skipped (treated as a single separator)
/// when iterating.
/// All returned component names/paths are slices of the original path.
/// There is no normalization of paths performed while iterating.
pub fn ComponentIterator(comptime path_type: PathType, comptime T: type) type {
return struct {
path: []const T,
root_end_index: usize = 0,
start_index: usize = 0,
end_index: usize = 0,
const Self = @This();
pub const Component = struct {
/// The current component's path name, e.g. 'b'.
/// This will never contain path separators.
name: []const T,
/// The full path up to and including the current component, e.g. '/a/b'
/// This will never contain trailing path separators.
path: []const T,
};
const InitError = switch (path_type) {
.windows => error{BadPathName},
else => error{},
};
/// After `init`, `next` will return the first component after the root
/// (there is no need to call `first` after `init`).
/// To iterate backwards (from the end of the path to the beginning), call `last`
/// after `init` and then iterate via `previous` calls.
/// For Windows paths, `error.BadPathName` is returned if the `path` has an explicit
/// namespace prefix (`\\.\`, `\\?\`, or `\??\`) or if it is a UNC path with more
/// than two path separators at the beginning.
pub fn init(path: []const T) InitError!Self {
const root_end_index: usize = switch (path_type) {
.posix, .uefi => posix: {
// Root on UEFI and POSIX only differs by the path separator
var root_end_index: usize = 0;
while (true) : (root_end_index += 1) {
if (root_end_index >= path.len or !path_type.isSep(T, path[root_end_index])) {
break;
}
}
break :posix root_end_index;
},
.windows => windows: {
// Namespaces other than the Win32 file namespace are tricky
// and basically impossible to determine a 'root' for, since it's
// possible to construct an effectively arbitrarily long 'root',
// e.g. `\\.\GLOBALROOT\??\UNC\localhost\C$\foo` is a
// possible path that would be effectively equivalent to
// `C:\foo`, and the `GLOBALROOT\??\` part can also be recursive,
// so `GLOBALROOT\??\GLOBALROOT\??\...` would work for any number
// of repetitions. Therefore, paths with an explicit namespace prefix
// (\\.\, \??\, \\?\) are not allowed here.
if (std.os.windows.getNamespacePrefix(T, path) != .none) {
return error.BadPathName;
}
const windows_path_type = std.os.windows.getUnprefixedPathType(T, path);
break :windows switch (windows_path_type) {
.relative => 0,
.root_local_device => path.len,
.rooted => 1,
.unc_absolute => unc: {
var end_index: usize = 2;
// Any extra separators between the first two and the server name are not allowed
// and will always lead to STATUS_OBJECT_PATH_INVALID if it is attempted
// to be used.
if (end_index < path.len and path_type.isSep(T, path[end_index])) {
return error.BadPathName;
}
// Server
while (end_index < path.len and !path_type.isSep(T, path[end_index])) {
end_index += 1;
}
// Slash(es) after server
while (end_index < path.len and path_type.isSep(T, path[end_index])) {
end_index += 1;
}
// Share
while (end_index < path.len and !path_type.isSep(T, path[end_index])) {
end_index += 1;
}
// Slash(es) after share
while (end_index < path.len and path_type.isSep(T, path[end_index])) {
end_index += 1;
}
break :unc end_index;
},
.drive_absolute => drive: {
var end_index: usize = 3;
while (end_index < path.len and path_type.isSep(T, path[end_index])) {
end_index += 1;
}
break :drive end_index;
},
.drive_relative => 2,
};
},
};
return .{
.path = path,
.root_end_index = root_end_index,
.start_index = root_end_index,
.end_index = root_end_index,
};
}
/// Returns the root of the path if it is an absolute path, or null otherwise.
/// For POSIX paths, this will be `/`.
/// For Windows paths, this will be something like `C:\`, `\\server\share\`, etc.
/// For UEFI paths, this will be `\`.
pub fn root(self: Self) ?[]const T {
if (self.root_end_index == 0) return null;
return self.path[0..self.root_end_index];
}
/// Returns the first component (from the beginning of the path).
/// For example, if the path is `/a/b/c` then this will return the `a` component.
/// After calling `first`, `previous` will always return `null`, and `next` will return
/// the component to the right of the one returned by `first`, if any exist.
pub fn first(self: *Self) ?Component {
self.start_index = self.root_end_index;
self.end_index = self.start_index;
while (self.end_index < self.path.len and !path_type.isSep(T, self.path[self.end_index])) {
self.end_index += 1;
}
if (self.end_index == self.start_index) return null;
return .{
.name = self.path[self.start_index..self.end_index],
.path = self.path[0..self.end_index],
};
}
/// Returns the last component (from the end of the path).
/// For example, if the path is `/a/b/c` then this will return the `c` component.
/// After calling `last`, `next` will always return `null`, and `previous` will return
/// the component to the left of the one returned by `last`, if any exist.
pub fn last(self: *Self) ?Component {
self.end_index = self.path.len;
while (true) {
if (self.end_index == self.root_end_index) {
self.start_index = self.end_index;
return null;
}
if (!path_type.isSep(T, self.path[self.end_index - 1])) break;
self.end_index -= 1;
}
self.start_index = self.end_index;
while (true) {
if (self.start_index == self.root_end_index) break;
if (path_type.isSep(T, self.path[self.start_index - 1])) break;
self.start_index -= 1;
}
if (self.start_index == self.end_index) return null;
return .{
.name = self.path[self.start_index..self.end_index],
.path = self.path[0..self.end_index],
};
}
/// Returns the next component (the component to the right of the most recently
/// returned component), or null if no such component exists.
/// For example, if the path is `/a/b/c` and the most recently returned component
/// is `b`, then this will return the `c` component.
pub fn next(self: *Self) ?Component {
const peek_result = self.peekNext() orelse return null;
self.start_index = peek_result.path.len - peek_result.name.len;
self.end_index = peek_result.path.len;
return peek_result;
}
/// Like `next`, but does not modify the iterator state.
pub fn peekNext(self: Self) ?Component {
var start_index = self.end_index;
while (start_index < self.path.len and path_type.isSep(T, self.path[start_index])) {
start_index += 1;
}
var end_index = start_index;
while (end_index < self.path.len and !path_type.isSep(T, self.path[end_index])) {
end_index += 1;
}
if (start_index == end_index) return null;
return .{
.name = self.path[start_index..end_index],
.path = self.path[0..end_index],
};
}
/// Returns the previous component (the component to the left of the most recently
/// returned component), or null if no such component exists.
/// For example, if the path is `/a/b/c` and the most recently returned component
/// is `b`, then this will return the `a` component.
pub fn previous(self: *Self) ?Component {
const peek_result = self.peekPrevious() orelse return null;
self.start_index = peek_result.path.len - peek_result.name.len;
self.end_index = peek_result.path.len;
return peek_result;
}
/// Like `previous`, but does not modify the iterator state.
pub fn peekPrevious(self: Self) ?Component {
var end_index = self.start_index;
while (true) {
if (end_index == self.root_end_index) return null;
if (!path_type.isSep(T, self.path[end_index - 1])) break;
end_index -= 1;
}
var start_index = end_index;
while (true) {
if (start_index == self.root_end_index) break;
if (path_type.isSep(T, self.path[start_index - 1])) break;
start_index -= 1;
}
if (start_index == end_index) return null;
return .{
.name = self.path[start_index..end_index],
.path = self.path[0..end_index],
};
}
};
}
pub const NativeComponentIterator = ComponentIterator(switch (native_os) {
.windows => .windows,
.uefi => .uefi,
else => .posix,
}, u8);
pub fn componentIterator(path: []const u8) !NativeComponentIterator {
return NativeComponentIterator.init(path);
}
test "ComponentIterator posix" {
const PosixComponentIterator = ComponentIterator(.posix, u8);
{
const path = "a/b/c/";
var it = try PosixComponentIterator.init(path);
try std.testing.expectEqual(@as(usize, 0), it.root_end_index);
try std.testing.expect(null == it.root());
{
try std.testing.expect(null == it.previous());
const first_via_next = it.next().?;
try std.testing.expectEqualStrings("a", first_via_next.name);
try std.testing.expectEqualStrings("a", first_via_next.path);
const first = it.first().?;
try std.testing.expectEqualStrings("a", first.name);
try std.testing.expectEqualStrings("a", first.path);
try std.testing.expect(null == it.previous());
const second = it.next().?;
try std.testing.expectEqualStrings("b", second.name);
try std.testing.expectEqualStrings("a/b", second.path);
const third = it.next().?;
try std.testing.expectEqualStrings("c", third.name);
try std.testing.expectEqualStrings("a/b/c", third.path);
try std.testing.expect(null == it.next());
}
{
const last = it.last().?;
try std.testing.expectEqualStrings("c", last.name);
try std.testing.expectEqualStrings("a/b/c", last.path);
try std.testing.expect(null == it.next());
const second_to_last = it.previous().?;
try std.testing.expectEqualStrings("b", second_to_last.name);
try std.testing.expectEqualStrings("a/b", second_to_last.path);
const third_to_last = it.previous().?;
try std.testing.expectEqualStrings("a", third_to_last.name);
try std.testing.expectEqualStrings("a", third_to_last.path);
try std.testing.expect(null == it.previous());
}
}
{
const path = "/a/b/c/";
var it = try PosixComponentIterator.init(path);
try std.testing.expectEqual(@as(usize, 1), it.root_end_index);
try std.testing.expectEqualStrings("/", it.root().?);
{
try std.testing.expect(null == it.previous());
const first_via_next = it.next().?;
try std.testing.expectEqualStrings("a", first_via_next.name);
try std.testing.expectEqualStrings("/a", first_via_next.path);
const first = it.first().?;
try std.testing.expectEqualStrings("a", first.name);
try std.testing.expectEqualStrings("/a", first.path);
try std.testing.expect(null == it.previous());
const second = it.next().?;
try std.testing.expectEqualStrings("b", second.name);
try std.testing.expectEqualStrings("/a/b", second.path);
const third = it.next().?;
try std.testing.expectEqualStrings("c", third.name);
try std.testing.expectEqualStrings("/a/b/c", third.path);
try std.testing.expect(null == it.next());
}
{
const last = it.last().?;
try std.testing.expectEqualStrings("c", last.name);
try std.testing.expectEqualStrings("/a/b/c", last.path);
try std.testing.expect(null == it.next());
const second_to_last = it.previous().?;
try std.testing.expectEqualStrings("b", second_to_last.name);
try std.testing.expectEqualStrings("/a/b", second_to_last.path);
const third_to_last = it.previous().?;
try std.testing.expectEqualStrings("a", third_to_last.name);
try std.testing.expectEqualStrings("/a", third_to_last.path);
try std.testing.expect(null == it.previous());
}
}
{
const path = "/";
var it = try PosixComponentIterator.init(path);
try std.testing.expectEqual(@as(usize, 1), it.root_end_index);
try std.testing.expectEqualStrings("/", it.root().?);
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.next());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.next());
}
{
const path = "";
var it = try PosixComponentIterator.init(path);
try std.testing.expectEqual(@as(usize, 0), it.root_end_index);
try std.testing.expect(null == it.root());
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.next());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.next());
}
}
test "ComponentIterator windows" {
const WindowsComponentIterator = ComponentIterator(.windows, u8);
{
const path = "a/b\\c//";
var it = try WindowsComponentIterator.init(path);
try std.testing.expectEqual(@as(usize, 0), it.root_end_index);
try std.testing.expect(null == it.root());
{
try std.testing.expect(null == it.previous());
const first_via_next = it.next().?;
try std.testing.expectEqualStrings("a", first_via_next.name);
try std.testing.expectEqualStrings("a", first_via_next.path);
const first = it.first().?;
try std.testing.expectEqualStrings("a", first.name);
try std.testing.expectEqualStrings("a", first.path);
try std.testing.expect(null == it.previous());
const second = it.next().?;
try std.testing.expectEqualStrings("b", second.name);
try std.testing.expectEqualStrings("a/b", second.path);
const third = it.next().?;
try std.testing.expectEqualStrings("c", third.name);
try std.testing.expectEqualStrings("a/b\\c", third.path);
try std.testing.expect(null == it.next());
}
{
const last = it.last().?;
try std.testing.expectEqualStrings("c", last.name);
try std.testing.expectEqualStrings("a/b\\c", last.path);
try std.testing.expect(null == it.next());
const second_to_last = it.previous().?;
try std.testing.expectEqualStrings("b", second_to_last.name);
try std.testing.expectEqualStrings("a/b", second_to_last.path);
const third_to_last = it.previous().?;
try std.testing.expectEqualStrings("a", third_to_last.name);
try std.testing.expectEqualStrings("a", third_to_last.path);
try std.testing.expect(null == it.previous());
}
}
{
const path = "C:\\a/b/c/";
var it = try WindowsComponentIterator.init(path);
try std.testing.expectEqual(@as(usize, 3), it.root_end_index);
try std.testing.expectEqualStrings("C:\\", it.root().?);
{
const first = it.first().?;
try std.testing.expectEqualStrings("a", first.name);
try std.testing.expectEqualStrings("C:\\a", first.path);
const second = it.next().?;
try std.testing.expectEqualStrings("b", second.name);
try std.testing.expectEqualStrings("C:\\a/b", second.path);
const third = it.next().?;
try std.testing.expectEqualStrings("c", third.name);
try std.testing.expectEqualStrings("C:\\a/b/c", third.path);
try std.testing.expect(null == it.next());
}
{
const last = it.last().?;
try std.testing.expectEqualStrings("c", last.name);
try std.testing.expectEqualStrings("C:\\a/b/c", last.path);
const second_to_last = it.previous().?;
try std.testing.expectEqualStrings("b", second_to_last.name);
try std.testing.expectEqualStrings("C:\\a/b", second_to_last.path);
const third_to_last = it.previous().?;
try std.testing.expectEqualStrings("a", third_to_last.name);
try std.testing.expectEqualStrings("C:\\a", third_to_last.path);
try std.testing.expect(null == it.previous());
}
}
{
const path = "/";
var it = try WindowsComponentIterator.init(path);
try std.testing.expectEqual(@as(usize, 1), it.root_end_index);
try std.testing.expectEqualStrings("/", it.root().?);
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.next());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.next());
}
{
const path = "";
var it = try WindowsComponentIterator.init(path);
try std.testing.expectEqual(@as(usize, 0), it.root_end_index);
try std.testing.expect(null == it.root());
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.first());
try std.testing.expect(null == it.next());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.previous());
try std.testing.expect(null == it.last());
try std.testing.expect(null == it.next());
}
}
test "ComponentIterator windows WTF-16" {
// TODO: Fix on big endian architectures
if (builtin.cpu.arch.endian() != .little) {
return error.SkipZigTest;
}
const WindowsComponentIterator = ComponentIterator(.windows, u16);
const L = std.unicode.utf8ToUtf16LeStringLiteral;
const path = L("C:\\a/b/c/");
var it = try WindowsComponentIterator.init(path);
try std.testing.expectEqual(@as(usize, 3), it.root_end_index);
try std.testing.expectEqualSlices(u16, L("C:\\"), it.root().?);
{
const first = it.first().?;
try std.testing.expectEqualSlices(u16, L("a"), first.name);
try std.testing.expectEqualSlices(u16, L("C:\\a"), first.path);
const second = it.next().?;
try std.testing.expectEqualSlices(u16, L("b"), second.name);
try std.testing.expectEqualSlices(u16, L("C:\\a/b"), second.path);
const third = it.next().?;
try std.testing.expectEqualSlices(u16, L("c"), third.name);
try std.testing.expectEqualSlices(u16, L("C:\\a/b/c"), third.path);
try std.testing.expect(null == it.next());
}
{
const last = it.last().?;
try std.testing.expectEqualSlices(u16, L("c"), last.name);
try std.testing.expectEqualSlices(u16, L("C:\\a/b/c"), last.path);
const second_to_last = it.previous().?;
try std.testing.expectEqualSlices(u16, L("b"), second_to_last.name);
try std.testing.expectEqualSlices(u16, L("C:\\a/b"), second_to_last.path);
const third_to_last = it.previous().?;
try std.testing.expectEqualSlices(u16, L("a"), third_to_last.name);
try std.testing.expectEqualSlices(u16, L("C:\\a"), third_to_last.path);
try std.testing.expect(null == it.previous());
}
}
test "ComponentIterator roots" {
// UEFI
{
var it = try ComponentIterator(.uefi, u8).init("\\\\a");
try std.testing.expectEqualStrings("\\\\", it.root().?);
it = try ComponentIterator(.uefi, u8).init("//a");
try std.testing.expect(null == it.root());
}
// POSIX
{
var it = try ComponentIterator(.posix, u8).init("//a");
try std.testing.expectEqualStrings("//", it.root().?);
it = try ComponentIterator(.posix, u8).init("\\\\a");
try std.testing.expect(null == it.root());
}
// Windows
{
// Drive relative
var it = try ComponentIterator(.windows, u8).init("C:a");
try std.testing.expectEqualStrings("C:", it.root().?);
// Drive absolute
it = try ComponentIterator(.windows, u8).init("C://a");
try std.testing.expectEqualStrings("C://", it.root().?);
it = try ComponentIterator(.windows, u8).init("C:\\a");
try std.testing.expectEqualStrings("C:\\", it.root().?);
// Rooted
it = try ComponentIterator(.windows, u8).init("\\a");
try std.testing.expectEqualStrings("\\", it.root().?);
it = try ComponentIterator(.windows, u8).init("/a");
try std.testing.expectEqualStrings("/", it.root().?);
// Root local device
it = try ComponentIterator(.windows, u8).init("\\\\.");
try std.testing.expectEqualStrings("\\\\.", it.root().?);
it = try ComponentIterator(.windows, u8).init("//?");
try std.testing.expectEqualStrings("//?", it.root().?);
// UNC absolute
it = try ComponentIterator(.windows, u8).init("//");
try std.testing.expectEqualStrings("//", it.root().?);
it = try ComponentIterator(.windows, u8).init("\\\\a");
try std.testing.expectEqualStrings("\\\\a", it.root().?);
it = try ComponentIterator(.windows, u8).init("\\\\a\\b\\\\c");
try std.testing.expectEqualStrings("\\\\a\\b\\\\", it.root().?);
it = try ComponentIterator(.windows, u8).init("//a");
try std.testing.expectEqualStrings("//a", it.root().?);
it = try ComponentIterator(.windows, u8).init("//a/b//c");
try std.testing.expectEqualStrings("//a/b//", it.root().?);
}
}
/// Format a path encoded as bytes for display as UTF-8.
/// Returns a Formatter for the given path. The path will be converted to valid UTF-8
/// during formatting. This is a lossy conversion if the path contains any ill-formed UTF-8.
/// Ill-formed UTF-8 byte sequences are replaced by the replacement character (U+FFFD)
/// according to "U+FFFD Substitution of Maximal Subparts" from Chapter 3 of
/// the Unicode standard, and as specified by https://encoding.spec.whatwg.org/#utf-8-decoder
pub const fmtAsUtf8Lossy = std.unicode.fmtUtf8;
/// Format a path encoded as WTF-16 LE for display as UTF-8.
/// Return a Formatter for a (potentially ill-formed) UTF-16 LE path.
/// The path will be converted to valid UTF-8 during formatting. This is
/// a lossy conversion if the path contains any unpaired surrogates.
/// Unpaired surrogates are replaced by the replacement character (U+FFFD).
pub const fmtWtf16LeAsUtf8Lossy = std.unicode.fmtUtf16Le;