struct zig [src]
Alias for std.zig
Builds of the Zig compiler are distributed partly in source form. That
source lives here. These APIs are provided as-is and have absolutely no API
guarantees whatsoever.
    Members
- Ast (struct)
 - AstGen (struct)
 - AstRlAnnotate (struct)
 - binNameAlloc (Function)
 - BinNameOptions (struct)
 - BuildId (union)
 - BuiltinFn (struct)
 - c_builtins (struct)
 - c_translation (struct)
 - charEscape (Function)
 - Client (struct)
 - Color (enum)
 - EmitArtifact (enum)
 - EnvVar (enum)
 - ErrorBundle (struct)
 - findLineColumn (Function)
 - fmtChar (Function)
 - fmtId (Function)
 - fmtIdFlags (Function)
 - fmtIdP (Function)
 - fmtIdPU (Function)
 - fmtString (Function)
 - FormatId (struct)
 - hashName (Function)
 - hashSrc (Function)
 - isPrimitive (Function)
 - isUnderscore (Function)
 - isValidId (Function)
 - LibCDirs (struct)
 - LibCInstallation (struct)
 - lineDelta (Function)
 - llvm (struct)
 - Loc (struct)
 - LtoMode (enum)
 - max_src_size (Constant)
 - number_literal (struct)
 - parseCharLiteral (Function)
 - ParsedCharLiteral (union)
 - parseNumberLiteral (Function)
 - parseTargetQueryOrReportFatalError (Function)
 - primitives (struct)
 - printAstErrorsToStderr (Function)
 - putAstErrorsIntoBundle (Function)
 - readSourceFileToEndAlloc (Function)
 - resolveTargetQueryOrFatal (Function)
 - SanitizeC (enum)
 - serializeCpu (Function)
 - serializeCpuAlloc (Function)
 - Server (struct)
 - SimpleComptimeReason (enum)
 - SrcHash (Type)
 - srcHashEql (Function)
 - SrcHasher (struct)
 - string_literal (struct)
 - stringEscape (Function)
 - system (struct)
 - target (struct)
 - Token (struct)
 - Tokenizer (struct)
 - WindowsSdk (struct)
 - Zir (struct)
 - Zoir (struct)
 - ZonGen (struct)
 
Source
 //! Builds of the Zig compiler are distributed partly in source form. That
//! source lives here. These APIs are provided as-is and have absolutely no API
//! guarantees whatsoever.
const std = @import("std.zig");
const tokenizer = @import("zig/tokenizer.zig");
const assert = std.debug.assert;
const Allocator = std.mem.Allocator;
const Writer = std.Io.Writer;
pub const ErrorBundle = @import("zig/ErrorBundle.zig");
pub const Server = @import("zig/Server.zig");
pub const Client = @import("zig/Client.zig");
pub const Token = tokenizer.Token;
pub const Tokenizer = tokenizer.Tokenizer;
pub const string_literal = @import("zig/string_literal.zig");
pub const number_literal = @import("zig/number_literal.zig");
pub const primitives = @import("zig/primitives.zig");
pub const isPrimitive = primitives.isPrimitive;
pub const Ast = @import("zig/Ast.zig");
pub const AstGen = @import("zig/AstGen.zig");
pub const Zir = @import("zig/Zir.zig");
pub const Zoir = @import("zig/Zoir.zig");
pub const ZonGen = @import("zig/ZonGen.zig");
pub const system = @import("zig/system.zig");
pub const BuiltinFn = @import("zig/BuiltinFn.zig");
pub const AstRlAnnotate = @import("zig/AstRlAnnotate.zig");
pub const LibCInstallation = @import("zig/LibCInstallation.zig");
pub const WindowsSdk = @import("zig/WindowsSdk.zig");
pub const LibCDirs = @import("zig/LibCDirs.zig");
pub const target = @import("zig/target.zig");
pub const llvm = @import("zig/llvm.zig");
// Character literal parsing
pub const ParsedCharLiteral = string_literal.ParsedCharLiteral;
pub const parseCharLiteral = string_literal.parseCharLiteral;
pub const parseNumberLiteral = number_literal.parseNumberLiteral;
// Files needed by translate-c.
pub const c_builtins = @import("zig/c_builtins.zig");
pub const c_translation = @import("zig/c_translation.zig");
pub const SrcHasher = std.crypto.hash.Blake3;
pub const SrcHash = [16]u8;
pub const Color = enum {
    /// Determine whether stderr is a terminal or not automatically.
    auto,
    /// Assume stderr is not a terminal.
    off,
    /// Assume stderr is a terminal.
    on,
    pub fn get_tty_conf(color: Color) std.Io.tty.Config {
        return switch (color) {
            .auto => std.Io.tty.detectConfig(std.fs.File.stderr()),
            .on => .escape_codes,
            .off => .no_color,
        };
    }
    pub fn renderOptions(color: Color) std.zig.ErrorBundle.RenderOptions {
        return .{
            .ttyconf = get_tty_conf(color),
        };
    }
};
/// There are many assumptions in the entire codebase that Zig source files can
/// be byte-indexed with a u32 integer.
pub const max_src_size = std.math.maxInt(u32);
pub fn hashSrc(src: []const u8) SrcHash {
    var out: SrcHash = undefined;
    SrcHasher.hash(src, &out, .{});
    return out;
}
pub fn srcHashEql(a: SrcHash, b: SrcHash) bool {
    return @as(u128, @bitCast(a)) == @as(u128, @bitCast(b));
}
pub fn hashName(parent_hash: SrcHash, sep: []const u8, name: []const u8) SrcHash {
    var out: SrcHash = undefined;
    var hasher = SrcHasher.init(.{});
    hasher.update(&parent_hash);
    hasher.update(sep);
    hasher.update(name);
    hasher.final(&out);
    return out;
}
pub const Loc = struct {
    line: usize,
    column: usize,
    /// Does not include the trailing newline.
    source_line: []const u8,
    pub fn eql(a: Loc, b: Loc) bool {
        return a.line == b.line and a.column == b.column and std.mem.eql(u8, a.source_line, b.source_line);
    }
};
pub fn findLineColumn(source: []const u8, byte_offset: usize) Loc {
    var line: usize = 0;
    var column: usize = 0;
    var line_start: usize = 0;
    var i: usize = 0;
    while (i < byte_offset) : (i += 1) {
        switch (source[i]) {
            '\n' => {
                line += 1;
                column = 0;
                line_start = i + 1;
            },
            else => {
                column += 1;
            },
        }
    }
    while (i < source.len and source[i] != '\n') {
        i += 1;
    }
    return .{
        .line = line,
        .column = column,
        .source_line = source[line_start..i],
    };
}
pub fn lineDelta(source: []const u8, start: usize, end: usize) isize {
    var line: isize = 0;
    if (end >= start) {
        for (source[start..end]) |byte| switch (byte) {
            '\n' => line += 1,
            else => continue,
        };
    } else {
        for (source[end..start]) |byte| switch (byte) {
            '\n' => line -= 1,
            else => continue,
        };
    }
    return line;
}
pub const BinNameOptions = struct {
    root_name: []const u8,
    target: *const std.Target,
    output_mode: std.builtin.OutputMode,
    link_mode: ?std.builtin.LinkMode = null,
    version: ?std.SemanticVersion = null,
};
/// Returns the standard file system basename of a binary generated by the Zig compiler.
pub fn binNameAlloc(allocator: Allocator, options: BinNameOptions) error{OutOfMemory}![]u8 {
    const root_name = options.root_name;
    const t = options.target;
    switch (t.ofmt) {
        .coff => switch (options.output_mode) {
            .Exe => return std.fmt.allocPrint(allocator, "{s}{s}", .{ root_name, t.exeFileExt() }),
            .Lib => {
                const suffix = switch (options.link_mode orelse .static) {
                    .static => ".lib",
                    .dynamic => ".dll",
                };
                return std.fmt.allocPrint(allocator, "{s}{s}", .{ root_name, suffix });
            },
            .Obj => return std.fmt.allocPrint(allocator, "{s}.obj", .{root_name}),
        },
        .elf, .goff, .xcoff => switch (options.output_mode) {
            .Exe => return allocator.dupe(u8, root_name),
            .Lib => {
                switch (options.link_mode orelse .static) {
                    .static => return std.fmt.allocPrint(allocator, "{s}{s}.a", .{
                        t.libPrefix(), root_name,
                    }),
                    .dynamic => {
                        if (options.version) |ver| {
                            return std.fmt.allocPrint(allocator, "{s}{s}.so.{d}.{d}.{d}", .{
                                t.libPrefix(), root_name, ver.major, ver.minor, ver.patch,
                            });
                        } else {
                            return std.fmt.allocPrint(allocator, "{s}{s}.so", .{
                                t.libPrefix(), root_name,
                            });
                        }
                    },
                }
            },
            .Obj => return std.fmt.allocPrint(allocator, "{s}.o", .{root_name}),
        },
        .macho => switch (options.output_mode) {
            .Exe => return allocator.dupe(u8, root_name),
            .Lib => {
                switch (options.link_mode orelse .static) {
                    .static => return std.fmt.allocPrint(allocator, "{s}{s}.a", .{
                        t.libPrefix(), root_name,
                    }),
                    .dynamic => {
                        if (options.version) |ver| {
                            return std.fmt.allocPrint(allocator, "{s}{s}.{d}.{d}.{d}.dylib", .{
                                t.libPrefix(), root_name, ver.major, ver.minor, ver.patch,
                            });
                        } else {
                            return std.fmt.allocPrint(allocator, "{s}{s}.dylib", .{
                                t.libPrefix(), root_name,
                            });
                        }
                    },
                }
            },
            .Obj => return std.fmt.allocPrint(allocator, "{s}.o", .{root_name}),
        },
        .wasm => switch (options.output_mode) {
            .Exe => return std.fmt.allocPrint(allocator, "{s}{s}", .{ root_name, t.exeFileExt() }),
            .Lib => {
                switch (options.link_mode orelse .static) {
                    .static => return std.fmt.allocPrint(allocator, "{s}{s}.a", .{
                        t.libPrefix(), root_name,
                    }),
                    .dynamic => return std.fmt.allocPrint(allocator, "{s}.wasm", .{root_name}),
                }
            },
            .Obj => return std.fmt.allocPrint(allocator, "{s}.o", .{root_name}),
        },
        .c => return std.fmt.allocPrint(allocator, "{s}.c", .{root_name}),
        .spirv => return std.fmt.allocPrint(allocator, "{s}.spv", .{root_name}),
        .hex => return std.fmt.allocPrint(allocator, "{s}.ihex", .{root_name}),
        .raw => return std.fmt.allocPrint(allocator, "{s}.bin", .{root_name}),
        .plan9 => switch (options.output_mode) {
            .Exe => return allocator.dupe(u8, root_name),
            .Obj => return std.fmt.allocPrint(allocator, "{s}{s}", .{
                root_name, t.ofmt.fileExt(t.cpu.arch),
            }),
            .Lib => return std.fmt.allocPrint(allocator, "{s}{s}.a", .{
                t.libPrefix(), root_name,
            }),
        },
    }
}
pub const SanitizeC = enum {
    off,
    trap,
    full,
};
pub const BuildId = union(enum) {
    none,
    fast,
    uuid,
    sha1,
    md5,
    hexstring: HexString,
    pub fn eql(a: BuildId, b: BuildId) bool {
        const Tag = @typeInfo(BuildId).@"union".tag_type.?;
        const a_tag: Tag = a;
        const b_tag: Tag = b;
        if (a_tag != b_tag) return false;
        return switch (a) {
            .none, .fast, .uuid, .sha1, .md5 => true,
            .hexstring => |a_hexstring| std.mem.eql(u8, a_hexstring.toSlice(), b.hexstring.toSlice()),
        };
    }
    pub const HexString = struct {
        bytes: [32]u8,
        len: u8,
        /// Result is byte values, *not* hex-encoded.
        pub fn toSlice(hs: *const HexString) []const u8 {
            return hs.bytes[0..hs.len];
        }
    };
    /// Input is byte values, *not* hex-encoded.
    /// Asserts `bytes` fits inside `HexString`
    pub fn initHexString(bytes: []const u8) BuildId {
        var result: BuildId = .{ .hexstring = .{
            .bytes = undefined,
            .len = @intCast(bytes.len),
        } };
        @memcpy(result.hexstring.bytes[0..bytes.len], bytes);
        return result;
    }
    /// Converts UTF-8 text to a `BuildId`.
    pub fn parse(text: []const u8) !BuildId {
        if (std.mem.eql(u8, text, "none")) {
            return .none;
        } else if (std.mem.eql(u8, text, "fast")) {
            return .fast;
        } else if (std.mem.eql(u8, text, "uuid")) {
            return .uuid;
        } else if (std.mem.eql(u8, text, "sha1") or std.mem.eql(u8, text, "tree")) {
            return .sha1;
        } else if (std.mem.eql(u8, text, "md5")) {
            return .md5;
        } else if (std.mem.startsWith(u8, text, "0x")) {
            var result: BuildId = .{ .hexstring = undefined };
            const slice = try std.fmt.hexToBytes(&result.hexstring.bytes, text[2..]);
            result.hexstring.len = @as(u8, @intCast(slice.len));
            return result;
        }
        return error.InvalidBuildIdStyle;
    }
    test parse {
        try std.testing.expectEqual(BuildId.md5, try parse("md5"));
        try std.testing.expectEqual(BuildId.none, try parse("none"));
        try std.testing.expectEqual(BuildId.fast, try parse("fast"));
        try std.testing.expectEqual(BuildId.uuid, try parse("uuid"));
        try std.testing.expectEqual(BuildId.sha1, try parse("sha1"));
        try std.testing.expectEqual(BuildId.sha1, try parse("tree"));
        try std.testing.expect(BuildId.initHexString("").eql(try parse("0x")));
        try std.testing.expect(BuildId.initHexString("\x12\x34\x56").eql(try parse("0x123456")));
        try std.testing.expectError(error.InvalidLength, parse("0x12-34"));
        try std.testing.expectError(error.InvalidCharacter, parse("0xfoobbb"));
        try std.testing.expectError(error.InvalidBuildIdStyle, parse("yaddaxxx"));
    }
    pub fn format(id: BuildId, writer: *std.Io.Writer) std.Io.Writer.Error!void {
        switch (id) {
            .none, .fast, .uuid, .sha1, .md5 => {
                try writer.writeAll(@tagName(id));
            },
            .hexstring => |hs| {
                try writer.print("0x{x}", .{hs.toSlice()});
            },
        }
    }
    test format {
        try std.testing.expectFmt("none", "{f}", .{@as(BuildId, .none)});
        try std.testing.expectFmt("fast", "{f}", .{@as(BuildId, .fast)});
        try std.testing.expectFmt("uuid", "{f}", .{@as(BuildId, .uuid)});
        try std.testing.expectFmt("sha1", "{f}", .{@as(BuildId, .sha1)});
        try std.testing.expectFmt("md5", "{f}", .{@as(BuildId, .md5)});
        try std.testing.expectFmt("0x", "{f}", .{BuildId.initHexString("")});
        try std.testing.expectFmt("0x1234cdef", "{f}", .{BuildId.initHexString("\x12\x34\xcd\xef")});
    }
};
pub const LtoMode = enum { none, full, thin };
/// Renders a `std.Target.Cpu` value into a textual representation that can be parsed
/// via the `-mcpu` flag passed to the Zig compiler.
/// Appends the result to `buffer`.
pub fn serializeCpu(buffer: *std.array_list.Managed(u8), cpu: std.Target.Cpu) Allocator.Error!void {
    const all_features = cpu.arch.allFeaturesList();
    var populated_cpu_features = cpu.model.features;
    populated_cpu_features.populateDependencies(all_features);
    try buffer.appendSlice(cpu.model.name);
    if (populated_cpu_features.eql(cpu.features)) {
        // The CPU name alone is sufficient.
        return;
    }
    for (all_features, 0..) |feature, i_usize| {
        const i: std.Target.Cpu.Feature.Set.Index = @intCast(i_usize);
        const in_cpu_set = populated_cpu_features.isEnabled(i);
        const in_actual_set = cpu.features.isEnabled(i);
        try buffer.ensureUnusedCapacity(feature.name.len + 1);
        if (in_cpu_set and !in_actual_set) {
            buffer.appendAssumeCapacity('-');
            buffer.appendSliceAssumeCapacity(feature.name);
        } else if (!in_cpu_set and in_actual_set) {
            buffer.appendAssumeCapacity('+');
            buffer.appendSliceAssumeCapacity(feature.name);
        }
    }
}
pub fn serializeCpuAlloc(ally: Allocator, cpu: std.Target.Cpu) Allocator.Error![]u8 {
    var buffer = std.array_list.Managed(u8).init(ally);
    try serializeCpu(&buffer, cpu);
    return buffer.toOwnedSlice();
}
/// Return a Formatter for a Zig identifier, escaping it with `@""` syntax if needed.
///
/// See also `fmtIdFlags`.
pub fn fmtId(bytes: []const u8) FormatId {
    return .{ .bytes = bytes, .flags = .{} };
}
/// Return a Formatter for a Zig identifier, escaping it with `@""` syntax if needed.
///
/// See also `fmtId`.
pub fn fmtIdFlags(bytes: []const u8, flags: FormatId.Flags) FormatId {
    return .{ .bytes = bytes, .flags = flags };
}
pub fn fmtIdPU(bytes: []const u8) FormatId {
    return .{ .bytes = bytes, .flags = .{ .allow_primitive = true, .allow_underscore = true } };
}
pub fn fmtIdP(bytes: []const u8) FormatId {
    return .{ .bytes = bytes, .flags = .{ .allow_primitive = true } };
}
test fmtId {
    const expectFmt = std.testing.expectFmt;
    try expectFmt("@\"while\"", "{f}", .{fmtId("while")});
    try expectFmt("@\"while\"", "{f}", .{fmtIdFlags("while", .{ .allow_primitive = true })});
    try expectFmt("@\"while\"", "{f}", .{fmtIdFlags("while", .{ .allow_underscore = true })});
    try expectFmt("@\"while\"", "{f}", .{fmtIdFlags("while", .{ .allow_primitive = true, .allow_underscore = true })});
    try expectFmt("hello", "{f}", .{fmtId("hello")});
    try expectFmt("hello", "{f}", .{fmtIdFlags("hello", .{ .allow_primitive = true })});
    try expectFmt("hello", "{f}", .{fmtIdFlags("hello", .{ .allow_underscore = true })});
    try expectFmt("hello", "{f}", .{fmtIdFlags("hello", .{ .allow_primitive = true, .allow_underscore = true })});
    try expectFmt("@\"type\"", "{f}", .{fmtId("type")});
    try expectFmt("type", "{f}", .{fmtIdFlags("type", .{ .allow_primitive = true })});
    try expectFmt("@\"type\"", "{f}", .{fmtIdFlags("type", .{ .allow_underscore = true })});
    try expectFmt("type", "{f}", .{fmtIdFlags("type", .{ .allow_primitive = true, .allow_underscore = true })});
    try expectFmt("@\"_\"", "{f}", .{fmtId("_")});
    try expectFmt("@\"_\"", "{f}", .{fmtIdFlags("_", .{ .allow_primitive = true })});
    try expectFmt("_", "{f}", .{fmtIdFlags("_", .{ .allow_underscore = true })});
    try expectFmt("_", "{f}", .{fmtIdFlags("_", .{ .allow_primitive = true, .allow_underscore = true })});
    try expectFmt("@\"i123\"", "{f}", .{fmtId("i123")});
    try expectFmt("i123", "{f}", .{fmtIdFlags("i123", .{ .allow_primitive = true })});
    try expectFmt("@\"4four\"", "{f}", .{fmtId("4four")});
    try expectFmt("_underscore", "{f}", .{fmtId("_underscore")});
    try expectFmt("@\"11\\\"23\"", "{f}", .{fmtId("11\"23")});
    try expectFmt("@\"11\\x0f23\"", "{f}", .{fmtId("11\x0F23")});
    // These are technically not currently legal in Zig.
    try expectFmt("@\"\"", "{f}", .{fmtId("")});
    try expectFmt("@\"\\x00\"", "{f}", .{fmtId("\x00")});
}
pub const FormatId = struct {
    bytes: []const u8,
    flags: Flags,
    pub const Flags = struct {
        allow_primitive: bool = false,
        allow_underscore: bool = false,
    };
    /// Print the string as a Zig identifier, escaping it with `@""` syntax if needed.
    pub fn format(ctx: FormatId, writer: *Writer) Writer.Error!void {
        const bytes = ctx.bytes;
        if (isValidId(bytes) and
            (ctx.flags.allow_primitive or !std.zig.isPrimitive(bytes)) and
            (ctx.flags.allow_underscore or !isUnderscore(bytes)))
        {
            return writer.writeAll(bytes);
        }
        try writer.writeAll("@\"");
        try stringEscape(bytes, writer);
        try writer.writeByte('"');
    }
};
/// Return a formatter for escaping a double quoted Zig string.
pub fn fmtString(bytes: []const u8) std.fmt.Alt([]const u8, stringEscape) {
    return .{ .data = bytes };
}
/// Return a formatter for escaping a single quoted Zig string.
pub fn fmtChar(c: u21) std.fmt.Alt(u21, charEscape) {
    return .{ .data = c };
}
test fmtString {
    try std.testing.expectFmt("\\x0f", "{f}", .{fmtString("\x0f")});
    try std.testing.expectFmt(
        \\" \\ hi \x07 \x11 \" derp '"
    , "\"{f}\"", .{fmtString(" \\ hi \x07 \x11 \" derp '")});
}
test fmtChar {
    try std.testing.expectFmt("c \\u{26a1}", "{f} {f}", .{ fmtChar('c'), fmtChar('⚡') });
}
/// Print the string as escaped contents of a double quoted string.
pub fn stringEscape(bytes: []const u8, w: *Writer) Writer.Error!void {
    for (bytes) |byte| switch (byte) {
        '\n' => try w.writeAll("\\n"),
        '\r' => try w.writeAll("\\r"),
        '\t' => try w.writeAll("\\t"),
        '\\' => try w.writeAll("\\\\"),
        '"' => try w.writeAll("\\\""),
        '\'' => try w.writeByte('\''),
        ' ', '!', '#'...'&', '('...'[', ']'...'~' => try w.writeByte(byte),
        else => {
            try w.writeAll("\\x");
            try w.printInt(byte, 16, .lower, .{ .width = 2, .fill = '0' });
        },
    };
}
/// Print as escaped contents of a single-quoted string.
pub fn charEscape(codepoint: u21, w: *Writer) Writer.Error!void {
    switch (codepoint) {
        '\n' => try w.writeAll("\\n"),
        '\r' => try w.writeAll("\\r"),
        '\t' => try w.writeAll("\\t"),
        '\\' => try w.writeAll("\\\\"),
        '\'' => try w.writeAll("\\'"),
        '"', ' ', '!', '#'...'&', '('...'[', ']'...'~' => try w.writeByte(@intCast(codepoint)),
        else => {
            if (std.math.cast(u8, codepoint)) |byte| {
                try w.writeAll("\\x");
                try w.printInt(byte, 16, .lower, .{ .width = 2, .fill = '0' });
            } else {
                try w.writeAll("\\u{");
                try w.printInt(codepoint, 16, .lower, .{});
                try w.writeByte('}');
            }
        },
    }
}
pub fn isValidId(bytes: []const u8) bool {
    if (bytes.len == 0) return false;
    for (bytes, 0..) |c, i| {
        switch (c) {
            '_', 'a'...'z', 'A'...'Z' => {},
            '0'...'9' => if (i == 0) return false,
            else => return false,
        }
    }
    return std.zig.Token.getKeyword(bytes) == null;
}
test isValidId {
    try std.testing.expect(!isValidId(""));
    try std.testing.expect(isValidId("foobar"));
    try std.testing.expect(!isValidId("a b c"));
    try std.testing.expect(!isValidId("3d"));
    try std.testing.expect(!isValidId("enum"));
    try std.testing.expect(isValidId("i386"));
}
pub fn isUnderscore(bytes: []const u8) bool {
    return bytes.len == 1 and bytes[0] == '_';
}
test isUnderscore {
    try std.testing.expect(isUnderscore("_"));
    try std.testing.expect(!isUnderscore("__"));
    try std.testing.expect(!isUnderscore("_foo"));
    try std.testing.expect(isUnderscore("\x5f"));
    try std.testing.expect(!isUnderscore("\\x5f"));
}
/// If the source can be UTF-16LE encoded, this function asserts that `gpa`
/// will align a byte-sized allocation to at least 2. Allocators that don't do
/// this are rare.
pub fn readSourceFileToEndAlloc(gpa: Allocator, file_reader: *std.fs.File.Reader) ![:0]u8 {
    var buffer: std.ArrayList(u8) = .empty;
    defer buffer.deinit(gpa);
    if (file_reader.getSize()) |size| {
        const casted_size = std.math.cast(u32, size) orelse return error.StreamTooLong;
        // +1 to avoid resizing for the null byte added in toOwnedSliceSentinel below.
        try buffer.ensureTotalCapacityPrecise(gpa, casted_size + 1);
    } else |_| {}
    try file_reader.interface.appendRemaining(gpa, &buffer, .limited(max_src_size));
    // Detect unsupported file types with their Byte Order Mark
    const unsupported_boms = [_][]const u8{
        "\xff\xfe\x00\x00", // UTF-32 little endian
        "\xfe\xff\x00\x00", // UTF-32 big endian
        "\xfe\xff", // UTF-16 big endian
    };
    for (unsupported_boms) |bom| {
        if (std.mem.startsWith(u8, buffer.items, bom)) {
            return error.UnsupportedEncoding;
        }
    }
    // If the file starts with a UTF-16 little endian BOM, translate it to UTF-8
    if (std.mem.startsWith(u8, buffer.items, "\xff\xfe")) {
        if (buffer.items.len % 2 != 0) return error.InvalidEncoding;
        return std.unicode.utf16LeToUtf8AllocZ(gpa, @ptrCast(@alignCast(buffer.items))) catch |err| switch (err) {
            error.DanglingSurrogateHalf => error.UnsupportedEncoding,
            error.ExpectedSecondSurrogateHalf => error.UnsupportedEncoding,
            error.UnexpectedSecondSurrogateHalf => error.UnsupportedEncoding,
            else => |e| return e,
        };
    }
    return buffer.toOwnedSliceSentinel(gpa, 0);
}
pub fn printAstErrorsToStderr(gpa: Allocator, tree: Ast, path: []const u8, color: Color) !void {
    var wip_errors: std.zig.ErrorBundle.Wip = undefined;
    try wip_errors.init(gpa);
    defer wip_errors.deinit();
    try putAstErrorsIntoBundle(gpa, tree, path, &wip_errors);
    var error_bundle = try wip_errors.toOwnedBundle("");
    defer error_bundle.deinit(gpa);
    error_bundle.renderToStdErr(color.renderOptions());
}
pub fn putAstErrorsIntoBundle(
    gpa: Allocator,
    tree: Ast,
    path: []const u8,
    wip_errors: *std.zig.ErrorBundle.Wip,
) Allocator.Error!void {
    var zir = try AstGen.generate(gpa, tree);
    defer zir.deinit(gpa);
    try wip_errors.addZirErrorMessages(zir, tree, tree.source, path);
}
pub fn resolveTargetQueryOrFatal(target_query: std.Target.Query) std.Target {
    return std.zig.system.resolveTargetQuery(target_query) catch |err|
        std.process.fatal("unable to resolve target: {s}", .{@errorName(err)});
}
pub fn parseTargetQueryOrReportFatalError(
    allocator: Allocator,
    opts: std.Target.Query.ParseOptions,
) std.Target.Query {
    var opts_with_diags = opts;
    var diags: std.Target.Query.ParseOptions.Diagnostics = .{};
    if (opts_with_diags.diagnostics == null) {
        opts_with_diags.diagnostics = &diags;
    }
    return std.Target.Query.parse(opts_with_diags) catch |err| switch (err) {
        error.UnknownCpuModel => {
            help: {
                var help_text = std.array_list.Managed(u8).init(allocator);
                defer help_text.deinit();
                for (diags.arch.?.allCpuModels()) |cpu| {
                    help_text.print(" {s}\n", .{cpu.name}) catch break :help;
                }
                std.log.info("available CPUs for architecture '{s}':\n{s}", .{
                    @tagName(diags.arch.?), help_text.items,
                });
            }
            std.process.fatal("unknown CPU: '{s}'", .{diags.cpu_name.?});
        },
        error.UnknownCpuFeature => {
            help: {
                var help_text = std.array_list.Managed(u8).init(allocator);
                defer help_text.deinit();
                for (diags.arch.?.allFeaturesList()) |feature| {
                    help_text.print(" {s}: {s}\n", .{ feature.name, feature.description }) catch break :help;
                }
                std.log.info("available CPU features for architecture '{s}':\n{s}", .{
                    @tagName(diags.arch.?), help_text.items,
                });
            }
            std.process.fatal("unknown CPU feature: '{s}'", .{diags.unknown_feature_name.?});
        },
        error.UnknownObjectFormat => {
            help: {
                var help_text = std.array_list.Managed(u8).init(allocator);
                defer help_text.deinit();
                inline for (@typeInfo(std.Target.ObjectFormat).@"enum".fields) |field| {
                    help_text.print(" {s}\n", .{field.name}) catch break :help;
                }
                std.log.info("available object formats:\n{s}", .{help_text.items});
            }
            std.process.fatal("unknown object format: '{s}'", .{opts.object_format.?});
        },
        error.UnknownArchitecture => {
            help: {
                var help_text = std.array_list.Managed(u8).init(allocator);
                defer help_text.deinit();
                inline for (@typeInfo(std.Target.Cpu.Arch).@"enum".fields) |field| {
                    help_text.print(" {s}\n", .{field.name}) catch break :help;
                }
                std.log.info("available architectures:\n{s} native\n", .{help_text.items});
            }
            std.process.fatal("unknown architecture: '{s}'", .{diags.unknown_architecture_name.?});
        },
        else => |e| std.process.fatal("unable to parse target query '{s}': {s}", .{
            opts.arch_os_abi, @errorName(e),
        }),
    };
}
/// Collects all the environment variables that Zig could possibly inspect, so
/// that we can do reflection on this and print them with `zig env`.
pub const EnvVar = enum {
    ZIG_GLOBAL_CACHE_DIR,
    ZIG_LOCAL_CACHE_DIR,
    ZIG_LIB_DIR,
    ZIG_LIBC,
    ZIG_BUILD_RUNNER,
    ZIG_VERBOSE_LINK,
    ZIG_VERBOSE_CC,
    ZIG_BTRFS_WORKAROUND,
    ZIG_DEBUG_CMD,
    CC,
    NO_COLOR,
    CLICOLOR_FORCE,
    XDG_CACHE_HOME,
    HOME,
    pub fn isSet(comptime ev: EnvVar) bool {
        return std.process.hasNonEmptyEnvVarConstant(@tagName(ev));
    }
    pub fn get(ev: EnvVar, arena: std.mem.Allocator) !?[]u8 {
        if (std.process.getEnvVarOwned(arena, @tagName(ev))) |value| {
            return value;
        } else |err| switch (err) {
            error.EnvironmentVariableNotFound => return null,
            else => |e| return e,
        }
    }
    pub fn getPosix(comptime ev: EnvVar) ?[:0]const u8 {
        return std.posix.getenvZ(@tagName(ev));
    }
};
pub const SimpleComptimeReason = enum(u32) {
    // Evaluating at comptime because a builtin operand must be comptime-known.
    // These messages all mention a specific builtin.
    operand_Type,
    operand_setEvalBranchQuota,
    operand_setFloatMode,
    operand_branchHint,
    operand_setRuntimeSafety,
    operand_embedFile,
    operand_cImport,
    operand_cDefine_macro_name,
    operand_cDefine_macro_value,
    operand_cInclude_file_name,
    operand_cUndef_macro_name,
    operand_shuffle_mask,
    operand_atomicRmw_operation,
    operand_reduce_operation,
    // Evaluating at comptime because an operand must be comptime-known.
    // These messages do not mention a specific builtin (and may not be about a builtin at all).
    export_target,
    export_options,
    extern_options,
    prefetch_options,
    call_modifier,
    compile_error_string,
    inline_assembly_code,
    atomic_order,
    array_mul_factor,
    slice_cat_operand,
    inline_call_target,
    generic_call_target,
    wasm_memory_index,
    work_group_dim_index,
    clobber,
    // Evaluating at comptime because types must be comptime-known.
    // Reasons other than `.type` are just more specific messages.
    type,
    array_sentinel,
    pointer_sentinel,
    slice_sentinel,
    array_length,
    vector_length,
    error_set_contents,
    struct_fields,
    enum_fields,
    union_fields,
    function_ret_ty,
    function_parameters,
    // Evaluating at comptime because decl/field name must be comptime-known.
    decl_name,
    field_name,
    struct_field_name,
    enum_field_name,
    union_field_name,
    tuple_field_name,
    tuple_field_index,
    // Evaluating at comptime because it is an attribute of a global declaration.
    container_var_init,
    @"callconv",
    @"align",
    @"addrspace",
    @"linksection",
    // Miscellaneous reasons.
    comptime_keyword,
    comptime_call_modifier,
    inline_loop_operand,
    switch_item,
    tuple_field_default_value,
    struct_field_default_value,
    enum_field_tag_value,
    slice_single_item_ptr_bounds,
    stored_to_comptime_field,
    stored_to_comptime_var,
    casted_to_comptime_enum,
    casted_to_comptime_int,
    casted_to_comptime_float,
    panic_handler,
    pub fn message(r: SimpleComptimeReason) []const u8 {
        return switch (r) {
            // zig fmt: off
            .operand_Type                => "operand to '@Type' must be comptime-known",
            .operand_setEvalBranchQuota  => "operand to '@setEvalBranchQuota' must be comptime-known",
            .operand_setFloatMode        => "operand to '@setFloatMode' must be comptime-known",
            .operand_branchHint          => "operand to '@branchHint' must be comptime-known",
            .operand_setRuntimeSafety    => "operand to '@setRuntimeSafety' must be comptime-known",
            .operand_embedFile           => "operand to '@embedFile' must be comptime-known",
            .operand_cImport             => "operand to '@cImport' is evaluated at comptime",
            .operand_cDefine_macro_name  => "'@cDefine' macro name must be comptime-known",
            .operand_cDefine_macro_value => "'@cDefine' macro value must be comptime-known",
            .operand_cInclude_file_name  => "'@cInclude' file name must be comptime-known",
            .operand_cUndef_macro_name   => "'@cUndef' macro name must be comptime-known",
            .operand_shuffle_mask        => "'@shuffle' mask must be comptime-known",
            .operand_atomicRmw_operation => "'@atomicRmw' operation must be comptime-known",
            .operand_reduce_operation    => "'@reduce' operation must be comptime-known",
            .export_target        => "export target must be comptime-known",
            .export_options       => "export options must be comptime-known",
            .extern_options       => "extern options must be comptime-known",
            .prefetch_options     => "prefetch options must be comptime-known",
            .call_modifier        => "call modifier must be comptime-known",
            .compile_error_string => "compile error string must be comptime-known",
            .inline_assembly_code => "inline assembly code must be comptime-known",
            .atomic_order         => "atomic order must be comptime-known",
            .array_mul_factor     => "array multiplication factor must be comptime-known",
            .slice_cat_operand    => "slice being concatenated must be comptime-known",
            .inline_call_target   => "function being called inline must be comptime-known",
            .generic_call_target  => "generic function being called must be comptime-known",
            .wasm_memory_index    => "wasm memory index must be comptime-known",
            .work_group_dim_index => "work group dimension index must be comptime-known",
            .clobber              => "clobber must be comptime-known",
            .type                => "types must be comptime-known",
            .array_sentinel      => "array sentinel value must be comptime-known",
            .pointer_sentinel    => "pointer sentinel value must be comptime-known",
            .slice_sentinel      => "slice sentinel value must be comptime-known",
            .array_length        => "array length must be comptime-known",
            .vector_length       => "vector length must be comptime-known",
            .error_set_contents  => "error set contents must be comptime-known",
            .struct_fields       => "struct fields must be comptime-known",
            .enum_fields         => "enum fields must be comptime-known",
            .union_fields        => "union fields must be comptime-known",
            .function_ret_ty     => "function return type must be comptime-known",
            .function_parameters => "function parameters must be comptime-known",
            .decl_name         => "declaration name must be comptime-known",
            .field_name        => "field name must be comptime-known",
            .struct_field_name => "struct field name must be comptime-known",
            .enum_field_name   => "enum field name must be comptime-known",
            .union_field_name  => "union field name must be comptime-known",
            .tuple_field_name  => "tuple field name must be comptime-known",
            .tuple_field_index => "tuple field index must be comptime-known",
            .container_var_init => "initializer of container-level variable must be comptime-known",
            .@"callconv"        => "calling convention must be comptime-known",
            .@"align"           => "alignment must be comptime-known",
            .@"addrspace"       => "address space must be comptime-known",
            .@"linksection"     => "linksection must be comptime-known",
            .comptime_keyword             => "'comptime' keyword forces comptime evaluation",
            .comptime_call_modifier       => "'.compile_time' call modifier forces comptime evaluation",
            .inline_loop_operand          => "inline loop condition must be comptime-known",
            .switch_item                  => "switch prong values must be comptime-known",
            .tuple_field_default_value    => "tuple field default value must be comptime-known",
            .struct_field_default_value   => "struct field default value must be comptime-known",
            .enum_field_tag_value         => "enum field tag value must be comptime-known",
            .slice_single_item_ptr_bounds => "slice of single-item pointer must have comptime-known bounds",
            .stored_to_comptime_field     => "value stored to a comptime field must be comptime-known",
            .stored_to_comptime_var       => "value stored to a comptime variable must be comptime-known",
            .casted_to_comptime_enum      => "value casted to enum with 'comptime_int' tag type must be comptime-known",
            .casted_to_comptime_int       => "value casted to 'comptime_int' must be comptime-known",
            .casted_to_comptime_float     => "value casted to 'comptime_float' must be comptime-known",
            .panic_handler                => "panic handler must be comptime-known",
            // zig fmt: on
        };
    }
};
/// Every kind of artifact which the compiler can emit.
pub const EmitArtifact = enum {
    bin,
    @"asm",
    implib,
    llvm_ir,
    llvm_bc,
    docs,
    pdb,
    h,
    /// If using `Server` to communicate with the compiler, it will place requested artifacts in
    /// paths under the output directory, where those paths are named according to this function.
    /// Returned string is allocated with `gpa` and owned by the caller.
    pub fn cacheName(ea: EmitArtifact, gpa: Allocator, opts: BinNameOptions) Allocator.Error![]const u8 {
        const suffix: []const u8 = switch (ea) {
            .bin => return binNameAlloc(gpa, opts),
            .@"asm" => ".s",
            .implib => ".lib",
            .llvm_ir => ".ll",
            .llvm_bc => ".bc",
            .docs => "-docs",
            .pdb => ".pdb",
            .h => ".h",
        };
        return std.fmt.allocPrint(gpa, "{s}{s}", .{ opts.root_name, suffix });
    }
};
test {
    _ = Ast;
    _ = AstRlAnnotate;
    _ = BuiltinFn;
    _ = Client;
    _ = ErrorBundle;
    _ = LibCDirs;
    _ = LibCInstallation;
    _ = Server;
    _ = WindowsSdk;
    _ = number_literal;
    _ = primitives;
    _ = string_literal;
    _ = system;
    _ = target;
    _ = c_translation;
    _ = llvm;
}