struct Ast [src]
Alias for std.zig.Ast
Abstract Syntax Tree for Zig source code.
For Zig syntax, the root node is at nodes[0] and contains the list of
sub-nodes.
For Zon syntax, the root node is at nodes[0] and contains lhs as the node
index of the main expression.
Reference to externally-owned data.
Fields
source: [:0]const u8Reference to externally-owned data.
tokens: TokenList.Slice
nodes: NodeList.Slice
extra_data: []u32
mode: Mode = .zig
errors: []const Error
Members
- alignedVarDecl (Function)
- arrayInit (Function)
- arrayInitDot (Function)
- arrayInitDotTwo (Function)
- arrayInitOne (Function)
- arrayType (Function)
- arrayTypeSentinel (Function)
- asmFull (Function)
- asmSimple (Function)
- assignDestructure (Function)
- blockStatements (Function)
- builtinCallParams (Function)
- ByteOffset (Type)
- callFull (Function)
- callOne (Function)
- containerDecl (Function)
- containerDeclArg (Function)
- containerDeclRoot (Function)
- containerDeclTwo (Function)
- containerField (Function)
- containerFieldAlign (Function)
- containerFieldInit (Function)
- deinit (Function)
- Error (struct)
- errorOffset (Function)
- extraData (Function)
- extraDataSlice (Function)
- extraDataSliceWithLen (Function)
- ExtraIndex (enum)
- firstToken (Function)
- Fixups (struct)
- fnProto (Function)
- fnProtoMulti (Function)
- fnProtoOne (Function)
- fnProtoSimple (Function)
- forFull (Function)
- forSimple (Function)
- full (struct)
- fullArrayInit (Function)
- fullArrayType (Function)
- fullAsm (Function)
- fullCall (Function)
- fullContainerDecl (Function)
- fullContainerField (Function)
- fullFnProto (Function)
- fullFor (Function)
- fullIf (Function)
- fullPtrType (Function)
- fullSlice (Function)
- fullStructInit (Function)
- fullSwitch (Function)
- fullSwitchCase (Function)
- fullVarDecl (Function)
- fullWhile (Function)
- getNodeSource (Function)
- globalVarDecl (Function)
- ifFull (Function)
- ifSimple (Function)
- isTokenPrecededByTags (Function)
- lastToken (Function)
- localVarDecl (Function)
- Location (struct)
- Mode (enum)
- Node (struct)
- nodeData (Function)
- NodeList (Type)
- nodeMainToken (Function)
- nodeTag (Function)
- nodeToSpan (Function)
- OptionalTokenIndex (enum)
- OptionalTokenOffset (enum)
- parse (Function)
- ptrType (Function)
- ptrTypeAligned (Function)
- ptrTypeBitRange (Function)
- ptrTypeSentinel (Function)
- render (Function)
- renderError (Function)
- RenderError (Error Set)
- renderToArrayList (Function)
- rootDecls (Function)
- simpleVarDecl (Function)
- slice (Function)
- sliceOpen (Function)
- sliceSentinel (Function)
- Span (struct)
- structInit (Function)
- structInitDot (Function)
- structInitDotTwo (Function)
- structInitOne (Function)
- switchCase (Function)
- switchCaseOne (Function)
- switchFull (Function)
- taggedUnion (Function)
- taggedUnionEnumTag (Function)
- taggedUnionTwo (Function)
- TokenIndex (Type)
- TokenList (Type)
- tokenLocation (Function)
- TokenOffset (enum)
- tokenSlice (Function)
- tokensOnSameLine (Function)
- tokenStart (Function)
- tokensToSpan (Function)
- tokenTag (Function)
- tokenToSpan (Function)
- whileCont (Function)
- whileFull (Function)
- whileSimple (Function)
Source
//! Abstract Syntax Tree for Zig source code.
//! For Zig syntax, the root node is at nodes[0] and contains the list of
//! sub-nodes.
//! For Zon syntax, the root node is at nodes[0] and contains lhs as the node
//! index of the main expression.
/// Reference to externally-owned data.
source: [:0]const u8,
tokens: TokenList.Slice,
nodes: NodeList.Slice,
extra_data: []u32,
mode: Mode = .zig,
errors: []const Error,
pub const ByteOffset = u32;
pub const TokenList = std.MultiArrayList(struct {
tag: Token.Tag,
start: ByteOffset,
});
pub const NodeList = std.MultiArrayList(Node);
/// Index into `tokens`.
pub const TokenIndex = u32;
/// Index into `tokens`, or null.
pub const OptionalTokenIndex = enum(u32) {
none = std.math.maxInt(u32),
_,
pub fn unwrap(oti: OptionalTokenIndex) ?TokenIndex {
return if (oti == .none) null else @intFromEnum(oti);
}
pub fn fromToken(ti: TokenIndex) OptionalTokenIndex {
return @enumFromInt(ti);
}
pub fn fromOptional(oti: ?TokenIndex) OptionalTokenIndex {
return if (oti) |ti| @enumFromInt(ti) else .none;
}
};
/// A relative token index.
pub const TokenOffset = enum(i32) {
zero = 0,
_,
pub fn init(base: TokenIndex, destination: TokenIndex) TokenOffset {
const base_i64: i64 = base;
const destination_i64: i64 = destination;
return @enumFromInt(destination_i64 - base_i64);
}
pub fn toOptional(to: TokenOffset) OptionalTokenOffset {
const result: OptionalTokenOffset = @enumFromInt(@intFromEnum(to));
assert(result != .none);
return result;
}
pub fn toAbsolute(offset: TokenOffset, base: TokenIndex) TokenIndex {
return @intCast(@as(i64, base) + @intFromEnum(offset));
}
};
/// A relative token index, or null.
pub const OptionalTokenOffset = enum(i32) {
none = std.math.maxInt(i32),
_,
pub fn unwrap(oto: OptionalTokenOffset) ?TokenOffset {
return if (oto == .none) null else @enumFromInt(@intFromEnum(oto));
}
};
pub fn tokenTag(tree: *const Ast, token_index: TokenIndex) Token.Tag {
return tree.tokens.items(.tag)[token_index];
}
pub fn tokenStart(tree: *const Ast, token_index: TokenIndex) ByteOffset {
return tree.tokens.items(.start)[token_index];
}
pub fn nodeTag(tree: *const Ast, node: Node.Index) Node.Tag {
return tree.nodes.items(.tag)[@intFromEnum(node)];
}
pub fn nodeMainToken(tree: *const Ast, node: Node.Index) TokenIndex {
return tree.nodes.items(.main_token)[@intFromEnum(node)];
}
pub fn nodeData(tree: *const Ast, node: Node.Index) Node.Data {
return tree.nodes.items(.data)[@intFromEnum(node)];
}
pub fn isTokenPrecededByTags(
tree: *const Ast,
ti: TokenIndex,
expected_token_tags: []const Token.Tag,
) bool {
return std.mem.endsWith(
Token.Tag,
tree.tokens.items(.tag)[0..ti],
expected_token_tags,
);
}
pub const Location = struct {
line: usize,
column: usize,
line_start: usize,
line_end: usize,
};
pub const Span = struct {
start: u32,
end: u32,
main: u32,
};
pub fn deinit(tree: *Ast, gpa: Allocator) void {
tree.tokens.deinit(gpa);
tree.nodes.deinit(gpa);
gpa.free(tree.extra_data);
gpa.free(tree.errors);
tree.* = undefined;
}
pub const RenderError = error{
/// Ran out of memory allocating call stack frames to complete rendering, or
/// ran out of memory allocating space in the output buffer.
OutOfMemory,
};
pub const Mode = enum { zig, zon };
/// Result should be freed with tree.deinit() when there are
/// no more references to any of the tokens or nodes.
pub fn parse(gpa: Allocator, source: [:0]const u8, mode: Mode) Allocator.Error!Ast {
var tokens = Ast.TokenList{};
defer tokens.deinit(gpa);
// Empirically, the zig std lib has an 8:1 ratio of source bytes to token count.
const estimated_token_count = source.len / 8;
try tokens.ensureTotalCapacity(gpa, estimated_token_count);
var tokenizer = std.zig.Tokenizer.init(source);
while (true) {
const token = tokenizer.next();
try tokens.append(gpa, .{
.tag = token.tag,
.start = @intCast(token.loc.start),
});
if (token.tag == .eof) break;
}
var parser: Parse = .{
.source = source,
.gpa = gpa,
.tokens = tokens.slice(),
.errors = .{},
.nodes = .{},
.extra_data = .{},
.scratch = .{},
.tok_i = 0,
};
defer parser.errors.deinit(gpa);
defer parser.nodes.deinit(gpa);
defer parser.extra_data.deinit(gpa);
defer parser.scratch.deinit(gpa);
// Empirically, Zig source code has a 2:1 ratio of tokens to AST nodes.
// Make sure at least 1 so we can use appendAssumeCapacity on the root node below.
const estimated_node_count = (tokens.len + 2) / 2;
try parser.nodes.ensureTotalCapacity(gpa, estimated_node_count);
switch (mode) {
.zig => try parser.parseRoot(),
.zon => try parser.parseZon(),
}
const extra_data = try parser.extra_data.toOwnedSlice(gpa);
errdefer gpa.free(extra_data);
const errors = try parser.errors.toOwnedSlice(gpa);
errdefer gpa.free(errors);
// TODO experiment with compacting the MultiArrayList slices here
return Ast{
.source = source,
.mode = mode,
.tokens = tokens.toOwnedSlice(),
.nodes = parser.nodes.toOwnedSlice(),
.extra_data = extra_data,
.errors = errors,
};
}
/// `gpa` is used for allocating the resulting formatted source code.
/// Caller owns the returned slice of bytes, allocated with `gpa`.
pub fn render(tree: Ast, gpa: Allocator) RenderError![]u8 {
var buffer = std.ArrayList(u8).init(gpa);
defer buffer.deinit();
try tree.renderToArrayList(&buffer, .{});
return buffer.toOwnedSlice();
}
pub const Fixups = private_render.Fixups;
pub fn renderToArrayList(tree: Ast, buffer: *std.ArrayList(u8), fixups: Fixups) RenderError!void {
return @import("./render.zig").renderTree(buffer, tree, fixups);
}
/// Returns an extra offset for column and byte offset of errors that
/// should point after the token in the error message.
pub fn errorOffset(tree: Ast, parse_error: Error) u32 {
return if (parse_error.token_is_prev)
@as(u32, @intCast(tree.tokenSlice(parse_error.token).len))
else
0;
}
pub fn tokenLocation(self: Ast, start_offset: ByteOffset, token_index: TokenIndex) Location {
var loc = Location{
.line = 0,
.column = 0,
.line_start = start_offset,
.line_end = self.source.len,
};
const token_start = self.tokenStart(token_index);
// Scan to by line until we go past the token start
while (std.mem.indexOfScalarPos(u8, self.source, loc.line_start, '\n')) |i| {
if (i >= token_start) {
break; // Went past
}
loc.line += 1;
loc.line_start = i + 1;
}
const offset = loc.line_start;
for (self.source[offset..], 0..) |c, i| {
if (i + offset == token_start) {
loc.line_end = i + offset;
while (loc.line_end < self.source.len and self.source[loc.line_end] != '\n') {
loc.line_end += 1;
}
return loc;
}
if (c == '\n') {
loc.line += 1;
loc.column = 0;
loc.line_start = i + 1;
} else {
loc.column += 1;
}
}
return loc;
}
pub fn tokenSlice(tree: Ast, token_index: TokenIndex) []const u8 {
const token_tag = tree.tokenTag(token_index);
// Many tokens can be determined entirely by their tag.
if (token_tag.lexeme()) |lexeme| {
return lexeme;
}
// For some tokens, re-tokenization is needed to find the end.
var tokenizer: std.zig.Tokenizer = .{
.buffer = tree.source,
.index = tree.tokenStart(token_index),
};
const token = tokenizer.next();
assert(token.tag == token_tag);
return tree.source[token.loc.start..token.loc.end];
}
pub fn extraDataSlice(tree: Ast, range: Node.SubRange, comptime T: type) []const T {
return @ptrCast(tree.extra_data[@intFromEnum(range.start)..@intFromEnum(range.end)]);
}
pub fn extraDataSliceWithLen(tree: Ast, start: ExtraIndex, len: u32, comptime T: type) []const T {
return @ptrCast(tree.extra_data[@intFromEnum(start)..][0..len]);
}
pub fn extraData(tree: Ast, index: ExtraIndex, comptime T: type) T {
const fields = std.meta.fields(T);
var result: T = undefined;
inline for (fields, 0..) |field, i| {
@field(result, field.name) = switch (field.type) {
Node.Index,
Node.OptionalIndex,
OptionalTokenIndex,
ExtraIndex,
=> @enumFromInt(tree.extra_data[@intFromEnum(index) + i]),
TokenIndex => tree.extra_data[@intFromEnum(index) + i],
else => @compileError("unexpected field type: " ++ @typeName(field.type)),
};
}
return result;
}
fn loadOptionalNodesIntoBuffer(comptime size: usize, buffer: *[size]Node.Index, items: [size]Node.OptionalIndex) []Node.Index {
for (buffer, items, 0..) |*node, opt_node, i| {
node.* = opt_node.unwrap() orelse return buffer[0..i];
}
return buffer[0..];
}
pub fn rootDecls(tree: Ast) []const Node.Index {
switch (tree.mode) {
.zig => return tree.extraDataSlice(tree.nodeData(.root).extra_range, Node.Index),
// Ensure that the returned slice points into the existing memory of the Ast
.zon => return (&tree.nodes.items(.data)[@intFromEnum(Node.Index.root)].node)[0..1],
}
}
pub fn renderError(tree: Ast, parse_error: Error, stream: anytype) !void {
switch (parse_error.tag) {
.asterisk_after_ptr_deref => {
// Note that the token will point at the `.*` but ideally the source
// location would point to the `*` after the `.*`.
return stream.writeAll("'.*' cannot be followed by '*'. Are you missing a space?");
},
.chained_comparison_operators => {
return stream.writeAll("comparison operators cannot be chained");
},
.decl_between_fields => {
return stream.writeAll("declarations are not allowed between container fields");
},
.expected_block => {
return stream.print("expected block, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_block_or_assignment => {
return stream.print("expected block or assignment, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_block_or_expr => {
return stream.print("expected block or expression, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_block_or_field => {
return stream.print("expected block or field, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_container_members => {
return stream.print("expected test, comptime, var decl, or container field, found '{s}'", .{
tree.tokenTag(parse_error.token).symbol(),
});
},
.expected_expr => {
return stream.print("expected expression, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_expr_or_assignment => {
return stream.print("expected expression or assignment, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_expr_or_var_decl => {
return stream.print("expected expression or var decl, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_fn => {
return stream.print("expected function, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_inlinable => {
return stream.print("expected 'while' or 'for', found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_labelable => {
return stream.print("expected 'while', 'for', 'inline', or '{{', found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_param_list => {
return stream.print("expected parameter list, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_prefix_expr => {
return stream.print("expected prefix expression, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_primary_type_expr => {
return stream.print("expected primary type expression, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_pub_item => {
return stream.writeAll("expected function or variable declaration after pub");
},
.expected_return_type => {
return stream.print("expected return type expression, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_semi_or_else => {
return stream.writeAll("expected ';' or 'else' after statement");
},
.expected_semi_or_lbrace => {
return stream.writeAll("expected ';' or block after function prototype");
},
.expected_statement => {
return stream.print("expected statement, found '{s}'", .{
tree.tokenTag(parse_error.token).symbol(),
});
},
.expected_suffix_op => {
return stream.print("expected pointer dereference, optional unwrap, or field access, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_type_expr => {
return stream.print("expected type expression, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_var_decl => {
return stream.print("expected variable declaration, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_var_decl_or_fn => {
return stream.print("expected variable declaration or function, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_loop_payload => {
return stream.print("expected loop payload, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.expected_container => {
return stream.print("expected a struct, enum or union, found '{s}'", .{
tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev)).symbol(),
});
},
.extern_fn_body => {
return stream.writeAll("extern functions have no body");
},
.extra_addrspace_qualifier => {
return stream.writeAll("extra addrspace qualifier");
},
.extra_align_qualifier => {
return stream.writeAll("extra align qualifier");
},
.extra_allowzero_qualifier => {
return stream.writeAll("extra allowzero qualifier");
},
.extra_const_qualifier => {
return stream.writeAll("extra const qualifier");
},
.extra_volatile_qualifier => {
return stream.writeAll("extra volatile qualifier");
},
.ptr_mod_on_array_child_type => {
return stream.print("pointer modifier '{s}' not allowed on array child type", .{
tree.tokenTag(parse_error.token).symbol(),
});
},
.invalid_bit_range => {
return stream.writeAll("bit range not allowed on slices and arrays");
},
.same_line_doc_comment => {
return stream.writeAll("same line documentation comment");
},
.unattached_doc_comment => {
return stream.writeAll("unattached documentation comment");
},
.test_doc_comment => {
return stream.writeAll("documentation comments cannot be attached to tests");
},
.comptime_doc_comment => {
return stream.writeAll("documentation comments cannot be attached to comptime blocks");
},
.varargs_nonfinal => {
return stream.writeAll("function prototype has parameter after varargs");
},
.expected_continue_expr => {
return stream.writeAll("expected ':' before while continue expression");
},
.expected_semi_after_decl => {
return stream.writeAll("expected ';' after declaration");
},
.expected_semi_after_stmt => {
return stream.writeAll("expected ';' after statement");
},
.expected_comma_after_field => {
return stream.writeAll("expected ',' after field");
},
.expected_comma_after_arg => {
return stream.writeAll("expected ',' after argument");
},
.expected_comma_after_param => {
return stream.writeAll("expected ',' after parameter");
},
.expected_comma_after_initializer => {
return stream.writeAll("expected ',' after initializer");
},
.expected_comma_after_switch_prong => {
return stream.writeAll("expected ',' after switch prong");
},
.expected_comma_after_for_operand => {
return stream.writeAll("expected ',' after for operand");
},
.expected_comma_after_capture => {
return stream.writeAll("expected ',' after for capture");
},
.expected_initializer => {
return stream.writeAll("expected field initializer");
},
.mismatched_binary_op_whitespace => {
return stream.print("binary operator `{s}` has whitespace on one side, but not the other.", .{tree.tokenTag(parse_error.token).lexeme().?});
},
.invalid_ampersand_ampersand => {
return stream.writeAll("ambiguous use of '&&'; use 'and' for logical AND, or change whitespace to ' & &' for bitwise AND");
},
.c_style_container => {
return stream.print("'{s} {s}' is invalid", .{
parse_error.extra.expected_tag.symbol(), tree.tokenSlice(parse_error.token),
});
},
.zig_style_container => {
return stream.print("to declare a container do 'const {s} = {s}'", .{
tree.tokenSlice(parse_error.token), parse_error.extra.expected_tag.symbol(),
});
},
.previous_field => {
return stream.writeAll("field before declarations here");
},
.next_field => {
return stream.writeAll("field after declarations here");
},
.expected_var_const => {
return stream.writeAll("expected 'var' or 'const' before variable declaration");
},
.wrong_equal_var_decl => {
return stream.writeAll("variable initialized with '==' instead of '='");
},
.var_const_decl => {
return stream.writeAll("use 'var' or 'const' to declare variable");
},
.extra_for_capture => {
return stream.writeAll("extra capture in for loop");
},
.for_input_not_captured => {
return stream.writeAll("for input is not captured");
},
.invalid_byte => {
const tok_slice = tree.source[tree.tokens.items(.start)[parse_error.token]..];
return stream.print("{s} contains invalid byte: '{'}'", .{
switch (tok_slice[0]) {
'\'' => "character literal",
'"', '\\' => "string literal",
'/' => "comment",
else => unreachable,
},
std.zig.fmtEscapes(tok_slice[parse_error.extra.offset..][0..1]),
});
},
.expected_token => {
const found_tag = tree.tokenTag(parse_error.token + @intFromBool(parse_error.token_is_prev));
const expected_symbol = parse_error.extra.expected_tag.symbol();
switch (found_tag) {
.invalid => return stream.print("expected '{s}', found invalid bytes", .{
expected_symbol,
}),
else => return stream.print("expected '{s}', found '{s}'", .{
expected_symbol, found_tag.symbol(),
}),
}
},
}
}
pub fn firstToken(tree: Ast, node: Node.Index) TokenIndex {
var end_offset: u32 = 0;
var n = node;
while (true) switch (tree.nodeTag(n)) {
.root => return 0,
.test_decl,
.@"errdefer",
.@"defer",
.bool_not,
.negation,
.bit_not,
.negation_wrap,
.address_of,
.@"try",
.@"await",
.optional_type,
.@"switch",
.switch_comma,
.if_simple,
.@"if",
.@"suspend",
.@"resume",
.@"continue",
.@"break",
.@"return",
.anyframe_type,
.identifier,
.anyframe_literal,
.char_literal,
.number_literal,
.unreachable_literal,
.string_literal,
.multiline_string_literal,
.grouped_expression,
.builtin_call_two,
.builtin_call_two_comma,
.builtin_call,
.builtin_call_comma,
.error_set_decl,
.@"comptime",
.@"nosuspend",
.asm_simple,
.@"asm",
.array_type,
.array_type_sentinel,
.error_value,
=> return tree.nodeMainToken(n) - end_offset,
.array_init_dot,
.array_init_dot_comma,
.array_init_dot_two,
.array_init_dot_two_comma,
.struct_init_dot,
.struct_init_dot_comma,
.struct_init_dot_two,
.struct_init_dot_two_comma,
.enum_literal,
=> return tree.nodeMainToken(n) - 1 - end_offset,
.@"catch",
.equal_equal,
.bang_equal,
.less_than,
.greater_than,
.less_or_equal,
.greater_or_equal,
.assign_mul,
.assign_div,
.assign_mod,
.assign_add,
.assign_sub,
.assign_shl,
.assign_shl_sat,
.assign_shr,
.assign_bit_and,
.assign_bit_xor,
.assign_bit_or,
.assign_mul_wrap,
.assign_add_wrap,
.assign_sub_wrap,
.assign_mul_sat,
.assign_add_sat,
.assign_sub_sat,
.assign,
.merge_error_sets,
.mul,
.div,
.mod,
.array_mult,
.mul_wrap,
.mul_sat,
.add,
.sub,
.array_cat,
.add_wrap,
.sub_wrap,
.add_sat,
.sub_sat,
.shl,
.shl_sat,
.shr,
.bit_and,
.bit_xor,
.bit_or,
.@"orelse",
.bool_and,
.bool_or,
.slice_open,
.array_access,
.array_init_one,
.array_init_one_comma,
.switch_range,
.error_union,
=> n = tree.nodeData(n).node_and_node[0],
.for_range,
.call_one,
.call_one_comma,
.struct_init_one,
.struct_init_one_comma,
=> n = tree.nodeData(n).node_and_opt_node[0],
.field_access,
.unwrap_optional,
=> n = tree.nodeData(n).node_and_token[0],
.slice,
.slice_sentinel,
.array_init,
.array_init_comma,
.struct_init,
.struct_init_comma,
.call,
.call_comma,
=> n = tree.nodeData(n).node_and_extra[0],
.deref => n = tree.nodeData(n).node,
.assign_destructure => n = tree.assignDestructure(n).ast.variables[0],
.fn_decl,
.fn_proto_simple,
.fn_proto_multi,
.fn_proto_one,
.fn_proto,
=> {
var i = tree.nodeMainToken(n); // fn token
while (i > 0) {
i -= 1;
switch (tree.tokenTag(i)) {
.keyword_extern,
.keyword_export,
.keyword_pub,
.keyword_inline,
.keyword_noinline,
.string_literal,
=> continue,
else => return i + 1 - end_offset,
}
}
return i - end_offset;
},
.@"usingnamespace" => {
const main_token: TokenIndex = tree.nodeMainToken(n);
const has_visib_token = tree.isTokenPrecededByTags(main_token, &.{.keyword_pub});
end_offset += @intFromBool(has_visib_token);
return main_token - end_offset;
},
.async_call_one,
.async_call_one_comma,
=> {
end_offset += 1; // async token
n = tree.nodeData(n).node_and_opt_node[0];
},
.async_call,
.async_call_comma,
=> {
end_offset += 1; // async token
n = tree.nodeData(n).node_and_extra[0];
},
.container_field_init,
.container_field_align,
.container_field,
=> {
const name_token = tree.nodeMainToken(n);
const has_comptime_token = tree.isTokenPrecededByTags(name_token, &.{.keyword_comptime});
end_offset += @intFromBool(has_comptime_token);
return name_token - end_offset;
},
.global_var_decl,
.local_var_decl,
.simple_var_decl,
.aligned_var_decl,
=> {
var i = tree.nodeMainToken(n); // mut token
while (i > 0) {
i -= 1;
switch (tree.tokenTag(i)) {
.keyword_extern,
.keyword_export,
.keyword_comptime,
.keyword_pub,
.keyword_threadlocal,
.string_literal,
=> continue,
else => return i + 1 - end_offset,
}
}
return i - end_offset;
},
.block,
.block_semicolon,
.block_two,
.block_two_semicolon,
=> {
// Look for a label.
const lbrace = tree.nodeMainToken(n);
if (tree.isTokenPrecededByTags(lbrace, &.{ .identifier, .colon })) {
end_offset += 2;
}
return lbrace - end_offset;
},
.container_decl,
.container_decl_trailing,
.container_decl_two,
.container_decl_two_trailing,
.container_decl_arg,
.container_decl_arg_trailing,
.tagged_union,
.tagged_union_trailing,
.tagged_union_two,
.tagged_union_two_trailing,
.tagged_union_enum_tag,
.tagged_union_enum_tag_trailing,
=> {
const main_token = tree.nodeMainToken(n);
switch (tree.tokenTag(main_token -| 1)) {
.keyword_packed, .keyword_extern => end_offset += 1,
else => {},
}
return main_token - end_offset;
},
.ptr_type_aligned,
.ptr_type_sentinel,
.ptr_type,
.ptr_type_bit_range,
=> return tree.nodeMainToken(n) - end_offset,
.switch_case_one,
.switch_case_inline_one,
.switch_case,
.switch_case_inline,
=> {
const full_switch = tree.fullSwitchCase(n).?;
if (full_switch.inline_token) |inline_token| {
return inline_token;
} else if (full_switch.ast.values.len == 0) {
return full_switch.ast.arrow_token - 1 - end_offset; // else token
} else {
n = full_switch.ast.values[0];
}
},
.asm_output, .asm_input => {
assert(tree.tokenTag(tree.nodeMainToken(n) - 1) == .l_bracket);
return tree.nodeMainToken(n) - 1 - end_offset;
},
.while_simple,
.while_cont,
.@"while",
.for_simple,
.@"for",
=> {
// Look for a label and inline.
const main_token = tree.nodeMainToken(n);
var result = main_token;
if (tree.isTokenPrecededByTags(result, &.{.keyword_inline})) {
result = result - 1;
}
if (tree.isTokenPrecededByTags(result, &.{ .identifier, .colon })) {
result = result - 2;
}
return result - end_offset;
},
};
}
pub fn lastToken(tree: Ast, node: Node.Index) TokenIndex {
var n = node;
var end_offset: u32 = 0;
while (true) switch (tree.nodeTag(n)) {
.root => return @intCast(tree.tokens.len - 1),
.@"usingnamespace",
.bool_not,
.negation,
.bit_not,
.negation_wrap,
.address_of,
.@"try",
.@"await",
.optional_type,
.@"suspend",
.@"resume",
.@"nosuspend",
.@"comptime",
=> n = tree.nodeData(n).node,
.@"catch",
.equal_equal,
.bang_equal,
.less_than,
.greater_than,
.less_or_equal,
.greater_or_equal,
.assign_mul,
.assign_div,
.assign_mod,
.assign_add,
.assign_sub,
.assign_shl,
.assign_shl_sat,
.assign_shr,
.assign_bit_and,
.assign_bit_xor,
.assign_bit_or,
.assign_mul_wrap,
.assign_add_wrap,
.assign_sub_wrap,
.assign_mul_sat,
.assign_add_sat,
.assign_sub_sat,
.assign,
.merge_error_sets,
.mul,
.div,
.mod,
.array_mult,
.mul_wrap,
.mul_sat,
.add,
.sub,
.array_cat,
.add_wrap,
.sub_wrap,
.add_sat,
.sub_sat,
.shl,
.shl_sat,
.shr,
.bit_and,
.bit_xor,
.bit_or,
.@"orelse",
.bool_and,
.bool_or,
.error_union,
.if_simple,
.while_simple,
.for_simple,
.fn_decl,
.array_type,
.switch_range,
=> n = tree.nodeData(n).node_and_node[1],
.test_decl, .@"errdefer" => n = tree.nodeData(n).opt_token_and_node[1],
.@"defer" => n = tree.nodeData(n).node,
.anyframe_type => n = tree.nodeData(n).token_and_node[1],
.switch_case_one,
.switch_case_inline_one,
.ptr_type_aligned,
.ptr_type_sentinel,
=> n = tree.nodeData(n).opt_node_and_node[1],
.assign_destructure,
.ptr_type,
.ptr_type_bit_range,
.switch_case,
.switch_case_inline,
=> n = tree.nodeData(n).extra_and_node[1],
.fn_proto_simple => n = tree.nodeData(n).opt_node_and_opt_node[1].unwrap().?,
.fn_proto_multi,
.fn_proto_one,
.fn_proto,
=> n = tree.nodeData(n).extra_and_opt_node[1].unwrap().?,
.for_range => {
n = tree.nodeData(n).node_and_opt_node[1].unwrap() orelse {
return tree.nodeMainToken(n) + end_offset;
};
},
.field_access,
.unwrap_optional,
.asm_simple,
=> return tree.nodeData(n).node_and_token[1] + end_offset,
.grouped_expression, .asm_input => return tree.nodeData(n).node_and_token[1] + end_offset,
.multiline_string_literal, .error_set_decl => return tree.nodeData(n).token_and_token[1] + end_offset,
.asm_output => return tree.nodeData(n).opt_node_and_token[1] + end_offset,
.error_value => return tree.nodeMainToken(n) + 2 + end_offset,
.anyframe_literal,
.char_literal,
.number_literal,
.unreachable_literal,
.identifier,
.deref,
.enum_literal,
.string_literal,
=> return tree.nodeMainToken(n) + end_offset,
.@"return" => {
n = tree.nodeData(n).opt_node.unwrap() orelse {
return tree.nodeMainToken(n) + end_offset;
};
},
.call, .async_call => {
_, const extra_index = tree.nodeData(n).node_and_extra;
const params = tree.extraData(extra_index, Node.SubRange);
assert(params.start != params.end);
end_offset += 1; // for the rparen
n = @enumFromInt(tree.extra_data[@intFromEnum(params.end) - 1]); // last parameter
},
.tagged_union_enum_tag => {
const arg, const extra_index = tree.nodeData(n).node_and_extra;
const members = tree.extraData(extra_index, Node.SubRange);
if (members.start == members.end) {
end_offset += 4; // for the rparen + rparen + lbrace + rbrace
n = arg;
} else {
end_offset += 1; // for the rbrace
n = @enumFromInt(tree.extra_data[@intFromEnum(members.end) - 1]); // last parameter
}
},
.call_comma,
.async_call_comma,
.tagged_union_enum_tag_trailing,
=> {
_, const extra_index = tree.nodeData(n).node_and_extra;
const params = tree.extraData(extra_index, Node.SubRange);
assert(params.start != params.end);
end_offset += 2; // for the comma/semicolon + rparen/rbrace
n = @enumFromInt(tree.extra_data[@intFromEnum(params.end) - 1]); // last parameter
},
.@"switch" => {
const condition, const extra_index = tree.nodeData(n).node_and_extra;
const cases = tree.extraData(extra_index, Node.SubRange);
if (cases.start == cases.end) {
end_offset += 3; // rparen, lbrace, rbrace
n = condition;
} else {
end_offset += 1; // for the rbrace
n = @enumFromInt(tree.extra_data[@intFromEnum(cases.end) - 1]); // last case
}
},
.container_decl_arg => {
const arg, const extra_index = tree.nodeData(n).node_and_extra;
const members = tree.extraData(extra_index, Node.SubRange);
if (members.end == members.start) {
end_offset += 3; // for the rparen + lbrace + rbrace
n = arg;
} else {
end_offset += 1; // for the rbrace
n = @enumFromInt(tree.extra_data[@intFromEnum(members.end) - 1]); // last parameter
}
},
.@"asm" => {
_, const extra_index = tree.nodeData(n).node_and_extra;
const extra = tree.extraData(extra_index, Node.Asm);
return extra.rparen + end_offset;
},
.array_init,
.struct_init,
=> {
_, const extra_index = tree.nodeData(n).node_and_extra;
const elements = tree.extraData(extra_index, Node.SubRange);
assert(elements.start != elements.end);
end_offset += 1; // for the rbrace
n = @enumFromInt(tree.extra_data[@intFromEnum(elements.end) - 1]); // last element
},
.array_init_comma,
.struct_init_comma,
.container_decl_arg_trailing,
.switch_comma,
=> {
_, const extra_index = tree.nodeData(n).node_and_extra;
const members = tree.extraData(extra_index, Node.SubRange);
assert(members.start != members.end);
end_offset += 2; // for the comma + rbrace
n = @enumFromInt(tree.extra_data[@intFromEnum(members.end) - 1]); // last parameter
},
.array_init_dot,
.struct_init_dot,
.block,
.container_decl,
.tagged_union,
.builtin_call,
=> {
const range = tree.nodeData(n).extra_range;
assert(range.start != range.end);
end_offset += 1; // for the rbrace
n = @enumFromInt(tree.extra_data[@intFromEnum(range.end) - 1]); // last statement
},
.array_init_dot_comma,
.struct_init_dot_comma,
.block_semicolon,
.container_decl_trailing,
.tagged_union_trailing,
.builtin_call_comma,
=> {
const range = tree.nodeData(n).extra_range;
assert(range.start != range.end);
end_offset += 2; // for the comma/semicolon + rbrace/rparen
n = @enumFromInt(tree.extra_data[@intFromEnum(range.end) - 1]); // last member
},
.call_one,
.async_call_one,
=> {
_, const first_param = tree.nodeData(n).node_and_opt_node;
end_offset += 1; // for the rparen
n = first_param.unwrap() orelse {
return tree.nodeMainToken(n) + end_offset;
};
},
.array_init_dot_two,
.block_two,
.builtin_call_two,
.struct_init_dot_two,
.container_decl_two,
.tagged_union_two,
=> {
const opt_lhs, const opt_rhs = tree.nodeData(n).opt_node_and_opt_node;
if (opt_rhs.unwrap()) |rhs| {
end_offset += 1; // for the rparen/rbrace
n = rhs;
} else if (opt_lhs.unwrap()) |lhs| {
end_offset += 1; // for the rparen/rbrace
n = lhs;
} else {
switch (tree.nodeTag(n)) {
.array_init_dot_two,
.block_two,
.struct_init_dot_two,
=> end_offset += 1, // rbrace
.builtin_call_two => end_offset += 2, // lparen/lbrace + rparen/rbrace
.container_decl_two => {
var i: u32 = 2; // lbrace + rbrace
while (tree.tokenTag(tree.nodeMainToken(n) + i) == .container_doc_comment) i += 1;
end_offset += i;
},
.tagged_union_two => {
var i: u32 = 5; // (enum) {}
while (tree.tokenTag(tree.nodeMainToken(n) + i) == .container_doc_comment) i += 1;
end_offset += i;
},
else => unreachable,
}
return tree.nodeMainToken(n) + end_offset;
}
},
.array_init_dot_two_comma,
.builtin_call_two_comma,
.block_two_semicolon,
.struct_init_dot_two_comma,
.container_decl_two_trailing,
.tagged_union_two_trailing,
=> {
const opt_lhs, const opt_rhs = tree.nodeData(n).opt_node_and_opt_node;
end_offset += 2; // for the comma/semicolon + rbrace/rparen
if (opt_rhs.unwrap()) |rhs| {
n = rhs;
} else if (opt_lhs.unwrap()) |lhs| {
n = lhs;
} else {
unreachable;
}
},
.simple_var_decl => {
const type_node, const init_node = tree.nodeData(n).opt_node_and_opt_node;
if (init_node.unwrap()) |rhs| {
n = rhs;
} else if (type_node.unwrap()) |lhs| {
n = lhs;
} else {
end_offset += 1; // from mut token to name
return tree.nodeMainToken(n) + end_offset;
}
},
.aligned_var_decl => {
const align_node, const init_node = tree.nodeData(n).node_and_opt_node;
if (init_node.unwrap()) |rhs| {
n = rhs;
} else {
end_offset += 1; // for the rparen
n = align_node;
}
},
.global_var_decl => {
const extra_index, const init_node = tree.nodeData(n).extra_and_opt_node;
if (init_node.unwrap()) |rhs| {
n = rhs;
} else {
const extra = tree.extraData(extra_index, Node.GlobalVarDecl);
if (extra.section_node.unwrap()) |section_node| {
end_offset += 1; // for the rparen
n = section_node;
} else if (extra.align_node.unwrap()) |align_node| {
end_offset += 1; // for the rparen
n = align_node;
} else if (extra.type_node.unwrap()) |type_node| {
n = type_node;
} else {
end_offset += 1; // from mut token to name
return tree.nodeMainToken(n) + end_offset;
}
}
},
.local_var_decl => {
const extra_index, const init_node = tree.nodeData(n).extra_and_opt_node;
if (init_node.unwrap()) |rhs| {
n = rhs;
} else {
const extra = tree.extraData(extra_index, Node.LocalVarDecl);
end_offset += 1; // for the rparen
n = extra.align_node;
}
},
.container_field_init => {
const type_expr, const value_expr = tree.nodeData(n).node_and_opt_node;
n = value_expr.unwrap() orelse type_expr;
},
.array_access,
.array_init_one,
.container_field_align,
=> {
_, const rhs = tree.nodeData(n).node_and_node;
end_offset += 1; // for the rbracket/rbrace/rparen
n = rhs;
},
.container_field => {
_, const extra_index = tree.nodeData(n).node_and_extra;
const extra = tree.extraData(extra_index, Node.ContainerField);
n = extra.value_expr;
},
.struct_init_one => {
_, const first_field = tree.nodeData(n).node_and_opt_node;
end_offset += 1; // rbrace
n = first_field.unwrap() orelse {
return tree.nodeMainToken(n) + end_offset;
};
},
.slice_open => {
_, const start_node = tree.nodeData(n).node_and_node;
end_offset += 2; // ellipsis2 + rbracket, or comma + rparen
n = start_node;
},
.array_init_one_comma => {
_, const first_element = tree.nodeData(n).node_and_node;
end_offset += 2; // comma + rbrace
n = first_element;
},
.call_one_comma,
.async_call_one_comma,
.struct_init_one_comma,
=> {
_, const first_field = tree.nodeData(n).node_and_opt_node;
end_offset += 2; // ellipsis2 + rbracket, or comma + rparen
n = first_field.unwrap().?;
},
.slice => {
_, const extra_index = tree.nodeData(n).node_and_extra;
const extra = tree.extraData(extra_index, Node.Slice);
end_offset += 1; // rbracket
n = extra.end;
},
.slice_sentinel => {
_, const extra_index = tree.nodeData(n).node_and_extra;
const extra = tree.extraData(extra_index, Node.SliceSentinel);
end_offset += 1; // rbracket
n = extra.sentinel;
},
.@"continue", .@"break" => {
const opt_label, const opt_rhs = tree.nodeData(n).opt_token_and_opt_node;
if (opt_rhs.unwrap()) |rhs| {
n = rhs;
} else if (opt_label.unwrap()) |lhs| {
return lhs + end_offset;
} else {
return tree.nodeMainToken(n) + end_offset;
}
},
.while_cont => {
_, const extra_index = tree.nodeData(n).node_and_extra;
const extra = tree.extraData(extra_index, Node.WhileCont);
n = extra.then_expr;
},
.@"while" => {
_, const extra_index = tree.nodeData(n).node_and_extra;
const extra = tree.extraData(extra_index, Node.While);
n = extra.else_expr;
},
.@"if" => {
_, const extra_index = tree.nodeData(n).node_and_extra;
const extra = tree.extraData(extra_index, Node.If);
n = extra.else_expr;
},
.@"for" => {
const extra_index, const extra = tree.nodeData(n).@"for";
const index = @intFromEnum(extra_index) + extra.inputs + @intFromBool(extra.has_else);
n = @enumFromInt(tree.extra_data[index]);
},
.array_type_sentinel => {
_, const extra_index = tree.nodeData(n).node_and_extra;
const extra = tree.extraData(extra_index, Node.ArrayTypeSentinel);
n = extra.elem_type;
},
};
}
pub fn tokensOnSameLine(tree: Ast, token1: TokenIndex, token2: TokenIndex) bool {
const source = tree.source[tree.tokenStart(token1)..tree.tokenStart(token2)];
return mem.indexOfScalar(u8, source, '\n') == null;
}
pub fn getNodeSource(tree: Ast, node: Node.Index) []const u8 {
const first_token = tree.firstToken(node);
const last_token = tree.lastToken(node);
const start = tree.tokenStart(first_token);
const end = tree.tokenStart(last_token) + tree.tokenSlice(last_token).len;
return tree.source[start..end];
}
pub fn globalVarDecl(tree: Ast, node: Node.Index) full.VarDecl {
assert(tree.nodeTag(node) == .global_var_decl);
const extra_index, const init_node = tree.nodeData(node).extra_and_opt_node;
const extra = tree.extraData(extra_index, Node.GlobalVarDecl);
return tree.fullVarDeclComponents(.{
.type_node = extra.type_node,
.align_node = extra.align_node,
.addrspace_node = extra.addrspace_node,
.section_node = extra.section_node,
.init_node = init_node,
.mut_token = tree.nodeMainToken(node),
});
}
pub fn localVarDecl(tree: Ast, node: Node.Index) full.VarDecl {
assert(tree.nodeTag(node) == .local_var_decl);
const extra_index, const init_node = tree.nodeData(node).extra_and_opt_node;
const extra = tree.extraData(extra_index, Node.LocalVarDecl);
return tree.fullVarDeclComponents(.{
.type_node = extra.type_node.toOptional(),
.align_node = extra.align_node.toOptional(),
.addrspace_node = .none,
.section_node = .none,
.init_node = init_node,
.mut_token = tree.nodeMainToken(node),
});
}
pub fn simpleVarDecl(tree: Ast, node: Node.Index) full.VarDecl {
assert(tree.nodeTag(node) == .simple_var_decl);
const type_node, const init_node = tree.nodeData(node).opt_node_and_opt_node;
return tree.fullVarDeclComponents(.{
.type_node = type_node,
.align_node = .none,
.addrspace_node = .none,
.section_node = .none,
.init_node = init_node,
.mut_token = tree.nodeMainToken(node),
});
}
pub fn alignedVarDecl(tree: Ast, node: Node.Index) full.VarDecl {
assert(tree.nodeTag(node) == .aligned_var_decl);
const align_node, const init_node = tree.nodeData(node).node_and_opt_node;
return tree.fullVarDeclComponents(.{
.type_node = .none,
.align_node = align_node.toOptional(),
.addrspace_node = .none,
.section_node = .none,
.init_node = init_node,
.mut_token = tree.nodeMainToken(node),
});
}
pub fn assignDestructure(tree: Ast, node: Node.Index) full.AssignDestructure {
const extra_index, const value_expr = tree.nodeData(node).extra_and_node;
const variable_count = tree.extra_data[@intFromEnum(extra_index)];
return tree.fullAssignDestructureComponents(.{
.variables = tree.extraDataSliceWithLen(@enumFromInt(@intFromEnum(extra_index) + 1), variable_count, Node.Index),
.equal_token = tree.nodeMainToken(node),
.value_expr = value_expr,
});
}
pub fn ifSimple(tree: Ast, node: Node.Index) full.If {
assert(tree.nodeTag(node) == .if_simple);
const cond_expr, const then_expr = tree.nodeData(node).node_and_node;
return tree.fullIfComponents(.{
.cond_expr = cond_expr,
.then_expr = then_expr,
.else_expr = .none,
.if_token = tree.nodeMainToken(node),
});
}
pub fn ifFull(tree: Ast, node: Node.Index) full.If {
assert(tree.nodeTag(node) == .@"if");
const cond_expr, const extra_index = tree.nodeData(node).node_and_extra;
const extra = tree.extraData(extra_index, Node.If);
return tree.fullIfComponents(.{
.cond_expr = cond_expr,
.then_expr = extra.then_expr,
.else_expr = extra.else_expr.toOptional(),
.if_token = tree.nodeMainToken(node),
});
}
pub fn containerField(tree: Ast, node: Node.Index) full.ContainerField {
assert(tree.nodeTag(node) == .container_field);
const type_expr, const extra_index = tree.nodeData(node).node_and_extra;
const extra = tree.extraData(extra_index, Node.ContainerField);
const main_token = tree.nodeMainToken(node);
return tree.fullContainerFieldComponents(.{
.main_token = main_token,
.type_expr = type_expr.toOptional(),
.align_expr = extra.align_expr.toOptional(),
.value_expr = extra.value_expr.toOptional(),
.tuple_like = tree.tokenTag(main_token) != .identifier or
tree.tokenTag(main_token + 1) != .colon,
});
}
pub fn containerFieldInit(tree: Ast, node: Node.Index) full.ContainerField {
assert(tree.nodeTag(node) == .container_field_init);
const type_expr, const value_expr = tree.nodeData(node).node_and_opt_node;
const main_token = tree.nodeMainToken(node);
return tree.fullContainerFieldComponents(.{
.main_token = main_token,
.type_expr = type_expr.toOptional(),
.align_expr = .none,
.value_expr = value_expr,
.tuple_like = tree.tokenTag(main_token) != .identifier or
tree.tokenTag(main_token + 1) != .colon,
});
}
pub fn containerFieldAlign(tree: Ast, node: Node.Index) full.ContainerField {
assert(tree.nodeTag(node) == .container_field_align);
const type_expr, const align_expr = tree.nodeData(node).node_and_node;
const main_token = tree.nodeMainToken(node);
return tree.fullContainerFieldComponents(.{
.main_token = main_token,
.type_expr = type_expr.toOptional(),
.align_expr = align_expr.toOptional(),
.value_expr = .none,
.tuple_like = tree.tokenTag(main_token) != .identifier or
tree.tokenTag(main_token + 1) != .colon,
});
}
pub fn fnProtoSimple(tree: Ast, buffer: *[1]Node.Index, node: Node.Index) full.FnProto {
assert(tree.nodeTag(node) == .fn_proto_simple);
const first_param, const return_type = tree.nodeData(node).opt_node_and_opt_node;
const params = loadOptionalNodesIntoBuffer(1, buffer, .{first_param});
return tree.fullFnProtoComponents(.{
.proto_node = node,
.fn_token = tree.nodeMainToken(node),
.return_type = return_type,
.params = params,
.align_expr = .none,
.addrspace_expr = .none,
.section_expr = .none,
.callconv_expr = .none,
});
}
pub fn fnProtoMulti(tree: Ast, node: Node.Index) full.FnProto {
assert(tree.nodeTag(node) == .fn_proto_multi);
const extra_index, const return_type = tree.nodeData(node).extra_and_opt_node;
const params = tree.extraDataSlice(tree.extraData(extra_index, Node.SubRange), Node.Index);
return tree.fullFnProtoComponents(.{
.proto_node = node,
.fn_token = tree.nodeMainToken(node),
.return_type = return_type,
.params = params,
.align_expr = .none,
.addrspace_expr = .none,
.section_expr = .none,
.callconv_expr = .none,
});
}
pub fn fnProtoOne(tree: Ast, buffer: *[1]Node.Index, node: Node.Index) full.FnProto {
assert(tree.nodeTag(node) == .fn_proto_one);
const extra_index, const return_type = tree.nodeData(node).extra_and_opt_node;
const extra = tree.extraData(extra_index, Node.FnProtoOne);
const params = loadOptionalNodesIntoBuffer(1, buffer, .{extra.param});
return tree.fullFnProtoComponents(.{
.proto_node = node,
.fn_token = tree.nodeMainToken(node),
.return_type = return_type,
.params = params,
.align_expr = extra.align_expr,
.addrspace_expr = extra.addrspace_expr,
.section_expr = extra.section_expr,
.callconv_expr = extra.callconv_expr,
});
}
pub fn fnProto(tree: Ast, node: Node.Index) full.FnProto {
assert(tree.nodeTag(node) == .fn_proto);
const extra_index, const return_type = tree.nodeData(node).extra_and_opt_node;
const extra = tree.extraData(extra_index, Node.FnProto);
const params = tree.extraDataSlice(.{ .start = extra.params_start, .end = extra.params_end }, Node.Index);
return tree.fullFnProtoComponents(.{
.proto_node = node,
.fn_token = tree.nodeMainToken(node),
.return_type = return_type,
.params = params,
.align_expr = extra.align_expr,
.addrspace_expr = extra.addrspace_expr,
.section_expr = extra.section_expr,
.callconv_expr = extra.callconv_expr,
});
}
pub fn structInitOne(tree: Ast, buffer: *[1]Node.Index, node: Node.Index) full.StructInit {
assert(tree.nodeTag(node) == .struct_init_one or
tree.nodeTag(node) == .struct_init_one_comma);
const type_expr, const first_field = tree.nodeData(node).node_and_opt_node;
const fields = loadOptionalNodesIntoBuffer(1, buffer, .{first_field});
return .{
.ast = .{
.lbrace = tree.nodeMainToken(node),
.fields = fields,
.type_expr = type_expr.toOptional(),
},
};
}
pub fn structInitDotTwo(tree: Ast, buffer: *[2]Node.Index, node: Node.Index) full.StructInit {
assert(tree.nodeTag(node) == .struct_init_dot_two or
tree.nodeTag(node) == .struct_init_dot_two_comma);
const fields = loadOptionalNodesIntoBuffer(2, buffer, tree.nodeData(node).opt_node_and_opt_node);
return .{
.ast = .{
.lbrace = tree.nodeMainToken(node),
.fields = fields,
.type_expr = .none,
},
};
}
pub fn structInitDot(tree: Ast, node: Node.Index) full.StructInit {
assert(tree.nodeTag(node) == .struct_init_dot or
tree.nodeTag(node) == .struct_init_dot_comma);
const fields = tree.extraDataSlice(tree.nodeData(node).extra_range, Node.Index);
return .{
.ast = .{
.lbrace = tree.nodeMainToken(node),
.fields = fields,
.type_expr = .none,
},
};
}
pub fn structInit(tree: Ast, node: Node.Index) full.StructInit {
assert(tree.nodeTag(node) == .struct_init or
tree.nodeTag(node) == .struct_init_comma);
const type_expr, const extra_index = tree.nodeData(node).node_and_extra;
const fields = tree.extraDataSlice(tree.extraData(extra_index, Node.SubRange), Node.Index);
return .{
.ast = .{
.lbrace = tree.nodeMainToken(node),
.fields = fields,
.type_expr = type_expr.toOptional(),
},
};
}
pub fn arrayInitOne(tree: Ast, buffer: *[1]Node.Index, node: Node.Index) full.ArrayInit {
assert(tree.nodeTag(node) == .array_init_one or
tree.nodeTag(node) == .array_init_one_comma);
const type_expr, buffer[0] = tree.nodeData(node).node_and_node;
return .{
.ast = .{
.lbrace = tree.nodeMainToken(node),
.elements = buffer[0..1],
.type_expr = type_expr.toOptional(),
},
};
}
pub fn arrayInitDotTwo(tree: Ast, buffer: *[2]Node.Index, node: Node.Index) full.ArrayInit {
assert(tree.nodeTag(node) == .array_init_dot_two or
tree.nodeTag(node) == .array_init_dot_two_comma);
const elements = loadOptionalNodesIntoBuffer(2, buffer, tree.nodeData(node).opt_node_and_opt_node);
return .{
.ast = .{
.lbrace = tree.nodeMainToken(node),
.elements = elements,
.type_expr = .none,
},
};
}
pub fn arrayInitDot(tree: Ast, node: Node.Index) full.ArrayInit {
assert(tree.nodeTag(node) == .array_init_dot or
tree.nodeTag(node) == .array_init_dot_comma);
const elements = tree.extraDataSlice(tree.nodeData(node).extra_range, Node.Index);
return .{
.ast = .{
.lbrace = tree.nodeMainToken(node),
.elements = elements,
.type_expr = .none,
},
};
}
pub fn arrayInit(tree: Ast, node: Node.Index) full.ArrayInit {
assert(tree.nodeTag(node) == .array_init or
tree.nodeTag(node) == .array_init_comma);
const type_expr, const extra_index = tree.nodeData(node).node_and_extra;
const elements = tree.extraDataSlice(tree.extraData(extra_index, Node.SubRange), Node.Index);
return .{
.ast = .{
.lbrace = tree.nodeMainToken(node),
.elements = elements,
.type_expr = type_expr.toOptional(),
},
};
}
pub fn arrayType(tree: Ast, node: Node.Index) full.ArrayType {
assert(tree.nodeTag(node) == .array_type);
const elem_count, const elem_type = tree.nodeData(node).node_and_node;
return .{
.ast = .{
.lbracket = tree.nodeMainToken(node),
.elem_count = elem_count,
.sentinel = .none,
.elem_type = elem_type,
},
};
}
pub fn arrayTypeSentinel(tree: Ast, node: Node.Index) full.ArrayType {
assert(tree.nodeTag(node) == .array_type_sentinel);
const elem_count, const extra_index = tree.nodeData(node).node_and_extra;
const extra = tree.extraData(extra_index, Node.ArrayTypeSentinel);
return .{
.ast = .{
.lbracket = tree.nodeMainToken(node),
.elem_count = elem_count,
.sentinel = extra.sentinel.toOptional(),
.elem_type = extra.elem_type,
},
};
}
pub fn ptrTypeAligned(tree: Ast, node: Node.Index) full.PtrType {
assert(tree.nodeTag(node) == .ptr_type_aligned);
const align_node, const child_type = tree.nodeData(node).opt_node_and_node;
return tree.fullPtrTypeComponents(.{
.main_token = tree.nodeMainToken(node),
.align_node = align_node,
.addrspace_node = .none,
.sentinel = .none,
.bit_range_start = .none,
.bit_range_end = .none,
.child_type = child_type,
});
}
pub fn ptrTypeSentinel(tree: Ast, node: Node.Index) full.PtrType {
assert(tree.nodeTag(node) == .ptr_type_sentinel);
const sentinel, const child_type = tree.nodeData(node).opt_node_and_node;
return tree.fullPtrTypeComponents(.{
.main_token = tree.nodeMainToken(node),
.align_node = .none,
.addrspace_node = .none,
.sentinel = sentinel,
.bit_range_start = .none,
.bit_range_end = .none,
.child_type = child_type,
});
}
pub fn ptrType(tree: Ast, node: Node.Index) full.PtrType {
assert(tree.nodeTag(node) == .ptr_type);
const extra_index, const child_type = tree.nodeData(node).extra_and_node;
const extra = tree.extraData(extra_index, Node.PtrType);
return tree.fullPtrTypeComponents(.{
.main_token = tree.nodeMainToken(node),
.align_node = extra.align_node,
.addrspace_node = extra.addrspace_node,
.sentinel = extra.sentinel,
.bit_range_start = .none,
.bit_range_end = .none,
.child_type = child_type,
});
}
pub fn ptrTypeBitRange(tree: Ast, node: Node.Index) full.PtrType {
assert(tree.nodeTag(node) == .ptr_type_bit_range);
const extra_index, const child_type = tree.nodeData(node).extra_and_node;
const extra = tree.extraData(extra_index, Node.PtrTypeBitRange);
return tree.fullPtrTypeComponents(.{
.main_token = tree.nodeMainToken(node),
.align_node = extra.align_node.toOptional(),
.addrspace_node = extra.addrspace_node,
.sentinel = extra.sentinel,
.bit_range_start = extra.bit_range_start.toOptional(),
.bit_range_end = extra.bit_range_end.toOptional(),
.child_type = child_type,
});
}
pub fn sliceOpen(tree: Ast, node: Node.Index) full.Slice {
assert(tree.nodeTag(node) == .slice_open);
const sliced, const start = tree.nodeData(node).node_and_node;
return .{
.ast = .{
.sliced = sliced,
.lbracket = tree.nodeMainToken(node),
.start = start,
.end = .none,
.sentinel = .none,
},
};
}
pub fn slice(tree: Ast, node: Node.Index) full.Slice {
assert(tree.nodeTag(node) == .slice);
const sliced, const extra_index = tree.nodeData(node).node_and_extra;
const extra = tree.extraData(extra_index, Node.Slice);
return .{
.ast = .{
.sliced = sliced,
.lbracket = tree.nodeMainToken(node),
.start = extra.start,
.end = extra.end.toOptional(),
.sentinel = .none,
},
};
}
pub fn sliceSentinel(tree: Ast, node: Node.Index) full.Slice {
assert(tree.nodeTag(node) == .slice_sentinel);
const sliced, const extra_index = tree.nodeData(node).node_and_extra;
const extra = tree.extraData(extra_index, Node.SliceSentinel);
return .{
.ast = .{
.sliced = sliced,
.lbracket = tree.nodeMainToken(node),
.start = extra.start,
.end = extra.end,
.sentinel = extra.sentinel.toOptional(),
},
};
}
pub fn containerDeclTwo(tree: Ast, buffer: *[2]Node.Index, node: Node.Index) full.ContainerDecl {
assert(tree.nodeTag(node) == .container_decl_two or
tree.nodeTag(node) == .container_decl_two_trailing);
const members = loadOptionalNodesIntoBuffer(2, buffer, tree.nodeData(node).opt_node_and_opt_node);
return tree.fullContainerDeclComponents(.{
.main_token = tree.nodeMainToken(node),
.enum_token = null,
.members = members,
.arg = .none,
});
}
pub fn containerDecl(tree: Ast, node: Node.Index) full.ContainerDecl {
assert(tree.nodeTag(node) == .container_decl or
tree.nodeTag(node) == .container_decl_trailing);
const members = tree.extraDataSlice(tree.nodeData(node).extra_range, Node.Index);
return tree.fullContainerDeclComponents(.{
.main_token = tree.nodeMainToken(node),
.enum_token = null,
.members = members,
.arg = .none,
});
}
pub fn containerDeclArg(tree: Ast, node: Node.Index) full.ContainerDecl {
assert(tree.nodeTag(node) == .container_decl_arg or
tree.nodeTag(node) == .container_decl_arg_trailing);
const arg, const extra_index = tree.nodeData(node).node_and_extra;
const members = tree.extraDataSlice(tree.extraData(extra_index, Node.SubRange), Node.Index);
return tree.fullContainerDeclComponents(.{
.main_token = tree.nodeMainToken(node),
.enum_token = null,
.members = members,
.arg = arg.toOptional(),
});
}
pub fn containerDeclRoot(tree: Ast) full.ContainerDecl {
return .{
.layout_token = null,
.ast = .{
.main_token = 0,
.enum_token = null,
.members = tree.rootDecls(),
.arg = .none,
},
};
}
pub fn taggedUnionTwo(tree: Ast, buffer: *[2]Node.Index, node: Node.Index) full.ContainerDecl {
assert(tree.nodeTag(node) == .tagged_union_two or
tree.nodeTag(node) == .tagged_union_two_trailing);
const members = loadOptionalNodesIntoBuffer(2, buffer, tree.nodeData(node).opt_node_and_opt_node);
const main_token = tree.nodeMainToken(node);
return tree.fullContainerDeclComponents(.{
.main_token = main_token,
.enum_token = main_token + 2, // union lparen enum
.members = members,
.arg = .none,
});
}
pub fn taggedUnion(tree: Ast, node: Node.Index) full.ContainerDecl {
assert(tree.nodeTag(node) == .tagged_union or
tree.nodeTag(node) == .tagged_union_trailing);
const members = tree.extraDataSlice(tree.nodeData(node).extra_range, Node.Index);
const main_token = tree.nodeMainToken(node);
return tree.fullContainerDeclComponents(.{
.main_token = main_token,
.enum_token = main_token + 2, // union lparen enum
.members = members,
.arg = .none,
});
}
pub fn taggedUnionEnumTag(tree: Ast, node: Node.Index) full.ContainerDecl {
assert(tree.nodeTag(node) == .tagged_union_enum_tag or
tree.nodeTag(node) == .tagged_union_enum_tag_trailing);
const arg, const extra_index = tree.nodeData(node).node_and_extra;
const members = tree.extraDataSlice(tree.extraData(extra_index, Node.SubRange), Node.Index);
const main_token = tree.nodeMainToken(node);
return tree.fullContainerDeclComponents(.{
.main_token = main_token,
.enum_token = main_token + 2, // union lparen enum
.members = members,
.arg = arg.toOptional(),
});
}
pub fn switchFull(tree: Ast, node: Node.Index) full.Switch {
const main_token = tree.nodeMainToken(node);
const switch_token: TokenIndex, const label_token: ?TokenIndex = switch (tree.tokenTag(main_token)) {
.identifier => .{ main_token + 2, main_token },
.keyword_switch => .{ main_token, null },
else => unreachable,
};
const condition, const extra_index = tree.nodeData(node).node_and_extra;
const cases = tree.extraDataSlice(tree.extraData(extra_index, Ast.Node.SubRange), Node.Index);
return .{
.ast = .{
.switch_token = switch_token,
.condition = condition,
.cases = cases,
},
.label_token = label_token,
};
}
pub fn switchCaseOne(tree: Ast, node: Node.Index) full.SwitchCase {
const first_value, const target_expr = tree.nodeData(node).opt_node_and_node;
return tree.fullSwitchCaseComponents(.{
.values = if (first_value == .none)
&.{}
else
// Ensure that the returned slice points into the existing memory of the Ast
(@as(*const Node.Index, @ptrCast(&tree.nodes.items(.data)[@intFromEnum(node)].opt_node_and_node[0])))[0..1],
.arrow_token = tree.nodeMainToken(node),
.target_expr = target_expr,
}, node);
}
pub fn switchCase(tree: Ast, node: Node.Index) full.SwitchCase {
const extra_index, const target_expr = tree.nodeData(node).extra_and_node;
const values = tree.extraDataSlice(tree.extraData(extra_index, Node.SubRange), Node.Index);
return tree.fullSwitchCaseComponents(.{
.values = values,
.arrow_token = tree.nodeMainToken(node),
.target_expr = target_expr,
}, node);
}
pub fn asmSimple(tree: Ast, node: Node.Index) full.Asm {
const template, const rparen = tree.nodeData(node).node_and_token;
return tree.fullAsmComponents(.{
.asm_token = tree.nodeMainToken(node),
.template = template,
.items = &.{},
.rparen = rparen,
});
}
pub fn asmFull(tree: Ast, node: Node.Index) full.Asm {
const template, const extra_index = tree.nodeData(node).node_and_extra;
const extra = tree.extraData(extra_index, Node.Asm);
const items = tree.extraDataSlice(.{ .start = extra.items_start, .end = extra.items_end }, Node.Index);
return tree.fullAsmComponents(.{
.asm_token = tree.nodeMainToken(node),
.template = template,
.items = items,
.rparen = extra.rparen,
});
}
pub fn whileSimple(tree: Ast, node: Node.Index) full.While {
const cond_expr, const then_expr = tree.nodeData(node).node_and_node;
return tree.fullWhileComponents(.{
.while_token = tree.nodeMainToken(node),
.cond_expr = cond_expr,
.cont_expr = .none,
.then_expr = then_expr,
.else_expr = .none,
});
}
pub fn whileCont(tree: Ast, node: Node.Index) full.While {
const cond_expr, const extra_index = tree.nodeData(node).node_and_extra;
const extra = tree.extraData(extra_index, Node.WhileCont);
return tree.fullWhileComponents(.{
.while_token = tree.nodeMainToken(node),
.cond_expr = cond_expr,
.cont_expr = extra.cont_expr.toOptional(),
.then_expr = extra.then_expr,
.else_expr = .none,
});
}
pub fn whileFull(tree: Ast, node: Node.Index) full.While {
const cond_expr, const extra_index = tree.nodeData(node).node_and_extra;
const extra = tree.extraData(extra_index, Node.While);
return tree.fullWhileComponents(.{
.while_token = tree.nodeMainToken(node),
.cond_expr = cond_expr,
.cont_expr = extra.cont_expr,
.then_expr = extra.then_expr,
.else_expr = extra.else_expr.toOptional(),
});
}
pub fn forSimple(tree: Ast, node: Node.Index) full.For {
const data = &tree.nodes.items(.data)[@intFromEnum(node)].node_and_node;
return tree.fullForComponents(.{
.for_token = tree.nodeMainToken(node),
.inputs = (&data[0])[0..1],
.then_expr = data[1],
.else_expr = .none,
});
}
pub fn forFull(tree: Ast, node: Node.Index) full.For {
const extra_index, const extra = tree.nodeData(node).@"for";
const inputs = tree.extraDataSliceWithLen(extra_index, extra.inputs, Node.Index);
const then_expr: Node.Index = @enumFromInt(tree.extra_data[@intFromEnum(extra_index) + extra.inputs]);
const else_expr: Node.OptionalIndex = if (extra.has_else) @enumFromInt(tree.extra_data[@intFromEnum(extra_index) + extra.inputs + 1]) else .none;
return tree.fullForComponents(.{
.for_token = tree.nodeMainToken(node),
.inputs = inputs,
.then_expr = then_expr,
.else_expr = else_expr,
});
}
pub fn callOne(tree: Ast, buffer: *[1]Node.Index, node: Node.Index) full.Call {
const fn_expr, const first_param = tree.nodeData(node).node_and_opt_node;
const params = loadOptionalNodesIntoBuffer(1, buffer, .{first_param});
return tree.fullCallComponents(.{
.lparen = tree.nodeMainToken(node),
.fn_expr = fn_expr,
.params = params,
});
}
pub fn callFull(tree: Ast, node: Node.Index) full.Call {
const fn_expr, const extra_index = tree.nodeData(node).node_and_extra;
const params = tree.extraDataSlice(tree.extraData(extra_index, Node.SubRange), Node.Index);
return tree.fullCallComponents(.{
.lparen = tree.nodeMainToken(node),
.fn_expr = fn_expr,
.params = params,
});
}
fn fullVarDeclComponents(tree: Ast, info: full.VarDecl.Components) full.VarDecl {
var result: full.VarDecl = .{
.ast = info,
.visib_token = null,
.extern_export_token = null,
.lib_name = null,
.threadlocal_token = null,
.comptime_token = null,
};
var i = info.mut_token;
while (i > 0) {
i -= 1;
switch (tree.tokenTag(i)) {
.keyword_extern, .keyword_export => result.extern_export_token = i,
.keyword_comptime => result.comptime_token = i,
.keyword_pub => result.visib_token = i,
.keyword_threadlocal => result.threadlocal_token = i,
.string_literal => result.lib_name = i,
else => break,
}
}
return result;
}
fn fullAssignDestructureComponents(tree: Ast, info: full.AssignDestructure.Components) full.AssignDestructure {
var result: full.AssignDestructure = .{
.comptime_token = null,
.ast = info,
};
const first_variable_token = tree.firstToken(info.variables[0]);
const maybe_comptime_token = switch (tree.nodeTag(info.variables[0])) {
.global_var_decl,
.local_var_decl,
.aligned_var_decl,
.simple_var_decl,
=> first_variable_token,
else => first_variable_token - 1,
};
if (tree.tokenTag(maybe_comptime_token) == .keyword_comptime) {
result.comptime_token = maybe_comptime_token;
}
return result;
}
fn fullIfComponents(tree: Ast, info: full.If.Components) full.If {
var result: full.If = .{
.ast = info,
.payload_token = null,
.error_token = null,
.else_token = undefined,
};
// if (cond_expr) |x|
// ^ ^
const payload_pipe = tree.lastToken(info.cond_expr) + 2;
if (tree.tokenTag(payload_pipe) == .pipe) {
result.payload_token = payload_pipe + 1;
}
if (info.else_expr != .none) {
// then_expr else |x|
// ^ ^
result.else_token = tree.lastToken(info.then_expr) + 1;
if (tree.tokenTag(result.else_token + 1) == .pipe) {
result.error_token = result.else_token + 2;
}
}
return result;
}
fn fullContainerFieldComponents(tree: Ast, info: full.ContainerField.Components) full.ContainerField {
var result: full.ContainerField = .{
.ast = info,
.comptime_token = null,
};
if (tree.isTokenPrecededByTags(info.main_token, &.{.keyword_comptime})) {
// comptime type = init,
// ^ ^
// comptime name: type = init,
// ^ ^
result.comptime_token = info.main_token - 1;
}
return result;
}
fn fullFnProtoComponents(tree: Ast, info: full.FnProto.Components) full.FnProto {
var result: full.FnProto = .{
.ast = info,
.visib_token = null,
.extern_export_inline_token = null,
.lib_name = null,
.name_token = null,
.lparen = undefined,
};
var i = info.fn_token;
while (i > 0) {
i -= 1;
switch (tree.tokenTag(i)) {
.keyword_extern,
.keyword_export,
.keyword_inline,
.keyword_noinline,
=> result.extern_export_inline_token = i,
.keyword_pub => result.visib_token = i,
.string_literal => result.lib_name = i,
else => break,
}
}
const after_fn_token = info.fn_token + 1;
if (tree.tokenTag(after_fn_token) == .identifier) {
result.name_token = after_fn_token;
result.lparen = after_fn_token + 1;
} else {
result.lparen = after_fn_token;
}
assert(tree.tokenTag(result.lparen) == .l_paren);
return result;
}
fn fullPtrTypeComponents(tree: Ast, info: full.PtrType.Components) full.PtrType {
const size: std.builtin.Type.Pointer.Size = switch (tree.tokenTag(info.main_token)) {
.asterisk,
.asterisk_asterisk,
=> .one,
.l_bracket => switch (tree.tokenTag(info.main_token + 1)) {
.asterisk => if (tree.tokenTag(info.main_token + 2) == .identifier) .c else .many,
else => .slice,
},
else => unreachable,
};
var result: full.PtrType = .{
.size = size,
.allowzero_token = null,
.const_token = null,
.volatile_token = null,
.ast = info,
};
// We need to be careful that we don't iterate over any sub-expressions
// here while looking for modifiers as that could result in false
// positives. Therefore, start after a sentinel if there is one and
// skip over any align node and bit range nodes.
var i = if (info.sentinel.unwrap()) |sentinel| tree.lastToken(sentinel) + 1 else switch (size) {
.many, .c => info.main_token + 1,
else => info.main_token,
};
const end = tree.firstToken(info.child_type);
while (i < end) : (i += 1) {
switch (tree.tokenTag(i)) {
.keyword_allowzero => result.allowzero_token = i,
.keyword_const => result.const_token = i,
.keyword_volatile => result.volatile_token = i,
.keyword_align => {
const align_node = info.align_node.unwrap().?;
if (info.bit_range_end.unwrap()) |bit_range_end| {
assert(info.bit_range_start != .none);
i = tree.lastToken(bit_range_end) + 1;
} else {
i = tree.lastToken(align_node) + 1;
}
},
else => {},
}
}
return result;
}
fn fullContainerDeclComponents(tree: Ast, info: full.ContainerDecl.Components) full.ContainerDecl {
var result: full.ContainerDecl = .{
.ast = info,
.layout_token = null,
};
if (info.main_token == 0) return result; // .root
const previous_token = info.main_token - 1;
switch (tree.tokenTag(previous_token)) {
.keyword_extern, .keyword_packed => result.layout_token = previous_token,
else => {},
}
return result;
}
fn fullSwitchComponents(tree: Ast, info: full.Switch.Components) full.Switch {
const tok_i = info.switch_token -| 1;
var result: full.Switch = .{
.ast = info,
.label_token = null,
};
if (tree.tokenTag(tok_i) == .colon and
tree.tokenTag(tok_i -| 1) == .identifier)
{
result.label_token = tok_i - 1;
}
return result;
}
fn fullSwitchCaseComponents(tree: Ast, info: full.SwitchCase.Components, node: Node.Index) full.SwitchCase {
var result: full.SwitchCase = .{
.ast = info,
.payload_token = null,
.inline_token = null,
};
if (tree.tokenTag(info.arrow_token + 1) == .pipe) {
result.payload_token = info.arrow_token + 2;
}
result.inline_token = switch (tree.nodeTag(node)) {
.switch_case_inline, .switch_case_inline_one => if (result.ast.values.len == 0)
info.arrow_token - 2
else
tree.firstToken(result.ast.values[0]) - 1,
else => null,
};
return result;
}
fn fullAsmComponents(tree: Ast, info: full.Asm.Components) full.Asm {
var result: full.Asm = .{
.ast = info,
.volatile_token = null,
.inputs = &.{},
.outputs = &.{},
.first_clobber = null,
};
if (tree.tokenTag(info.asm_token + 1) == .keyword_volatile) {
result.volatile_token = info.asm_token + 1;
}
const outputs_end: usize = for (info.items, 0..) |item, i| {
switch (tree.nodeTag(item)) {
.asm_output => continue,
else => break i,
}
} else info.items.len;
result.outputs = info.items[0..outputs_end];
result.inputs = info.items[outputs_end..];
if (info.items.len == 0) {
// asm ("foo" ::: "a", "b");
const template_token = tree.lastToken(info.template);
if (tree.tokenTag(template_token + 1) == .colon and
tree.tokenTag(template_token + 2) == .colon and
tree.tokenTag(template_token + 3) == .colon and
tree.tokenTag(template_token + 4) == .string_literal)
{
result.first_clobber = template_token + 4;
}
} else if (result.inputs.len != 0) {
// asm ("foo" :: [_] "" (y) : "a", "b");
const last_input = result.inputs[result.inputs.len - 1];
const rparen = tree.lastToken(last_input);
var i = rparen + 1;
// Allow a (useless) comma right after the closing parenthesis.
if (tree.tokenTag(i) == .comma) i = i + 1;
if (tree.tokenTag(i) == .colon and
tree.tokenTag(i + 1) == .string_literal)
{
result.first_clobber = i + 1;
}
} else {
// asm ("foo" : [_] "" (x) :: "a", "b");
const last_output = result.outputs[result.outputs.len - 1];
const rparen = tree.lastToken(last_output);
var i = rparen + 1;
// Allow a (useless) comma right after the closing parenthesis.
if (tree.tokenTag(i) == .comma) i = i + 1;
if (tree.tokenTag(i) == .colon and
tree.tokenTag(i + 1) == .colon and
tree.tokenTag(i + 2) == .string_literal)
{
result.first_clobber = i + 2;
}
}
return result;
}
fn fullWhileComponents(tree: Ast, info: full.While.Components) full.While {
var result: full.While = .{
.ast = info,
.inline_token = null,
.label_token = null,
.payload_token = null,
.else_token = undefined,
.error_token = null,
};
var tok_i = info.while_token;
if (tree.isTokenPrecededByTags(tok_i, &.{.keyword_inline})) {
result.inline_token = tok_i - 1;
tok_i = tok_i - 1;
}
if (tree.isTokenPrecededByTags(tok_i, &.{ .identifier, .colon })) {
result.label_token = tok_i - 2;
}
const last_cond_token = tree.lastToken(info.cond_expr);
if (tree.tokenTag(last_cond_token + 2) == .pipe) {
result.payload_token = last_cond_token + 3;
}
if (info.else_expr != .none) {
// then_expr else |x|
// ^ ^
result.else_token = tree.lastToken(info.then_expr) + 1;
if (tree.tokenTag(result.else_token + 1) == .pipe) {
result.error_token = result.else_token + 2;
}
}
return result;
}
fn fullForComponents(tree: Ast, info: full.For.Components) full.For {
var result: full.For = .{
.ast = info,
.inline_token = null,
.label_token = null,
.payload_token = undefined,
.else_token = undefined,
};
var tok_i = info.for_token;
if (tree.isTokenPrecededByTags(tok_i, &.{.keyword_inline})) {
result.inline_token = tok_i - 1;
tok_i = tok_i - 1;
}
if (tree.isTokenPrecededByTags(tok_i, &.{ .identifier, .colon })) {
result.label_token = tok_i - 2;
}
const last_cond_token = tree.lastToken(info.inputs[info.inputs.len - 1]);
result.payload_token = last_cond_token + @as(u32, 3) + @intFromBool(tree.tokenTag(last_cond_token + 1) == .comma);
if (info.else_expr != .none) {
result.else_token = tree.lastToken(info.then_expr) + 1;
}
return result;
}
fn fullCallComponents(tree: Ast, info: full.Call.Components) full.Call {
var result: full.Call = .{
.ast = info,
.async_token = null,
};
const first_token = tree.firstToken(info.fn_expr);
if (tree.isTokenPrecededByTags(first_token, &.{.keyword_async})) {
result.async_token = first_token - 1;
}
return result;
}
pub fn fullVarDecl(tree: Ast, node: Node.Index) ?full.VarDecl {
return switch (tree.nodeTag(node)) {
.global_var_decl => tree.globalVarDecl(node),
.local_var_decl => tree.localVarDecl(node),
.aligned_var_decl => tree.alignedVarDecl(node),
.simple_var_decl => tree.simpleVarDecl(node),
else => null,
};
}
pub fn fullIf(tree: Ast, node: Node.Index) ?full.If {
return switch (tree.nodeTag(node)) {
.if_simple => tree.ifSimple(node),
.@"if" => tree.ifFull(node),
else => null,
};
}
pub fn fullWhile(tree: Ast, node: Node.Index) ?full.While {
return switch (tree.nodeTag(node)) {
.while_simple => tree.whileSimple(node),
.while_cont => tree.whileCont(node),
.@"while" => tree.whileFull(node),
else => null,
};
}
pub fn fullFor(tree: Ast, node: Node.Index) ?full.For {
return switch (tree.nodeTag(node)) {
.for_simple => tree.forSimple(node),
.@"for" => tree.forFull(node),
else => null,
};
}
pub fn fullContainerField(tree: Ast, node: Node.Index) ?full.ContainerField {
return switch (tree.nodeTag(node)) {
.container_field_init => tree.containerFieldInit(node),
.container_field_align => tree.containerFieldAlign(node),
.container_field => tree.containerField(node),
else => null,
};
}
pub fn fullFnProto(tree: Ast, buffer: *[1]Ast.Node.Index, node: Node.Index) ?full.FnProto {
return switch (tree.nodeTag(node)) {
.fn_proto => tree.fnProto(node),
.fn_proto_multi => tree.fnProtoMulti(node),
.fn_proto_one => tree.fnProtoOne(buffer, node),
.fn_proto_simple => tree.fnProtoSimple(buffer, node),
.fn_decl => tree.fullFnProto(buffer, tree.nodeData(node).node_and_node[0]),
else => null,
};
}
pub fn fullStructInit(tree: Ast, buffer: *[2]Ast.Node.Index, node: Node.Index) ?full.StructInit {
return switch (tree.nodeTag(node)) {
.struct_init_one, .struct_init_one_comma => tree.structInitOne(buffer[0..1], node),
.struct_init_dot_two, .struct_init_dot_two_comma => tree.structInitDotTwo(buffer, node),
.struct_init_dot, .struct_init_dot_comma => tree.structInitDot(node),
.struct_init, .struct_init_comma => tree.structInit(node),
else => null,
};
}
pub fn fullArrayInit(tree: Ast, buffer: *[2]Node.Index, node: Node.Index) ?full.ArrayInit {
return switch (tree.nodeTag(node)) {
.array_init_one, .array_init_one_comma => tree.arrayInitOne(buffer[0..1], node),
.array_init_dot_two, .array_init_dot_two_comma => tree.arrayInitDotTwo(buffer, node),
.array_init_dot, .array_init_dot_comma => tree.arrayInitDot(node),
.array_init, .array_init_comma => tree.arrayInit(node),
else => null,
};
}
pub fn fullArrayType(tree: Ast, node: Node.Index) ?full.ArrayType {
return switch (tree.nodeTag(node)) {
.array_type => tree.arrayType(node),
.array_type_sentinel => tree.arrayTypeSentinel(node),
else => null,
};
}
pub fn fullPtrType(tree: Ast, node: Node.Index) ?full.PtrType {
return switch (tree.nodeTag(node)) {
.ptr_type_aligned => tree.ptrTypeAligned(node),
.ptr_type_sentinel => tree.ptrTypeSentinel(node),
.ptr_type => tree.ptrType(node),
.ptr_type_bit_range => tree.ptrTypeBitRange(node),
else => null,
};
}
pub fn fullSlice(tree: Ast, node: Node.Index) ?full.Slice {
return switch (tree.nodeTag(node)) {
.slice_open => tree.sliceOpen(node),
.slice => tree.slice(node),
.slice_sentinel => tree.sliceSentinel(node),
else => null,
};
}
pub fn fullContainerDecl(tree: Ast, buffer: *[2]Ast.Node.Index, node: Node.Index) ?full.ContainerDecl {
return switch (tree.nodeTag(node)) {
.root => tree.containerDeclRoot(),
.container_decl, .container_decl_trailing => tree.containerDecl(node),
.container_decl_arg, .container_decl_arg_trailing => tree.containerDeclArg(node),
.container_decl_two, .container_decl_two_trailing => tree.containerDeclTwo(buffer, node),
.tagged_union, .tagged_union_trailing => tree.taggedUnion(node),
.tagged_union_enum_tag, .tagged_union_enum_tag_trailing => tree.taggedUnionEnumTag(node),
.tagged_union_two, .tagged_union_two_trailing => tree.taggedUnionTwo(buffer, node),
else => null,
};
}
pub fn fullSwitch(tree: Ast, node: Node.Index) ?full.Switch {
return switch (tree.nodeTag(node)) {
.@"switch", .switch_comma => tree.switchFull(node),
else => null,
};
}
pub fn fullSwitchCase(tree: Ast, node: Node.Index) ?full.SwitchCase {
return switch (tree.nodeTag(node)) {
.switch_case_one, .switch_case_inline_one => tree.switchCaseOne(node),
.switch_case, .switch_case_inline => tree.switchCase(node),
else => null,
};
}
pub fn fullAsm(tree: Ast, node: Node.Index) ?full.Asm {
return switch (tree.nodeTag(node)) {
.asm_simple => tree.asmSimple(node),
.@"asm" => tree.asmFull(node),
else => null,
};
}
pub fn fullCall(tree: Ast, buffer: *[1]Ast.Node.Index, node: Node.Index) ?full.Call {
return switch (tree.nodeTag(node)) {
.call, .call_comma, .async_call, .async_call_comma => tree.callFull(node),
.call_one, .call_one_comma, .async_call_one, .async_call_one_comma => tree.callOne(buffer, node),
else => null,
};
}
pub fn builtinCallParams(tree: Ast, buffer: *[2]Ast.Node.Index, node: Ast.Node.Index) ?[]const Node.Index {
return switch (tree.nodeTag(node)) {
.builtin_call_two, .builtin_call_two_comma => loadOptionalNodesIntoBuffer(2, buffer, tree.nodeData(node).opt_node_and_opt_node),
.builtin_call, .builtin_call_comma => tree.extraDataSlice(tree.nodeData(node).extra_range, Node.Index),
else => null,
};
}
pub fn blockStatements(tree: Ast, buffer: *[2]Ast.Node.Index, node: Ast.Node.Index) ?[]const Node.Index {
return switch (tree.nodeTag(node)) {
.block_two, .block_two_semicolon => loadOptionalNodesIntoBuffer(2, buffer, tree.nodeData(node).opt_node_and_opt_node),
.block, .block_semicolon => tree.extraDataSlice(tree.nodeData(node).extra_range, Node.Index),
else => null,
};
}
/// Fully assembled AST node information.
pub const full = struct {
pub const VarDecl = struct {
visib_token: ?TokenIndex,
extern_export_token: ?TokenIndex,
lib_name: ?TokenIndex,
threadlocal_token: ?TokenIndex,
comptime_token: ?TokenIndex,
ast: Components,
pub const Components = struct {
mut_token: TokenIndex,
type_node: Node.OptionalIndex,
align_node: Node.OptionalIndex,
addrspace_node: Node.OptionalIndex,
section_node: Node.OptionalIndex,
init_node: Node.OptionalIndex,
};
pub fn firstToken(var_decl: VarDecl) TokenIndex {
return var_decl.visib_token orelse
var_decl.extern_export_token orelse
var_decl.threadlocal_token orelse
var_decl.comptime_token orelse
var_decl.ast.mut_token;
}
};
pub const AssignDestructure = struct {
comptime_token: ?TokenIndex,
ast: Components,
pub const Components = struct {
variables: []const Node.Index,
equal_token: TokenIndex,
value_expr: Node.Index,
};
};
pub const If = struct {
/// Points to the first token after the `|`. Will either be an identifier or
/// a `*` (with an identifier immediately after it).
payload_token: ?TokenIndex,
/// Points to the identifier after the `|`.
error_token: ?TokenIndex,
/// Populated only if else_expr != .none.
else_token: TokenIndex,
ast: Components,
pub const Components = struct {
if_token: TokenIndex,
cond_expr: Node.Index,
then_expr: Node.Index,
else_expr: Node.OptionalIndex,
};
};
pub const While = struct {
ast: Components,
inline_token: ?TokenIndex,
label_token: ?TokenIndex,
payload_token: ?TokenIndex,
error_token: ?TokenIndex,
/// Populated only if else_expr != none.
else_token: TokenIndex,
pub const Components = struct {
while_token: TokenIndex,
cond_expr: Node.Index,
cont_expr: Node.OptionalIndex,
then_expr: Node.Index,
else_expr: Node.OptionalIndex,
};
};
pub const For = struct {
ast: Components,
inline_token: ?TokenIndex,
label_token: ?TokenIndex,
payload_token: TokenIndex,
/// Populated only if else_expr != .none.
else_token: ?TokenIndex,
pub const Components = struct {
for_token: TokenIndex,
inputs: []const Node.Index,
then_expr: Node.Index,
else_expr: Node.OptionalIndex,
};
};
pub const ContainerField = struct {
comptime_token: ?TokenIndex,
ast: Components,
pub const Components = struct {
main_token: TokenIndex,
/// Can only be `.none` after calling `convertToNonTupleLike`.
type_expr: Node.OptionalIndex,
align_expr: Node.OptionalIndex,
value_expr: Node.OptionalIndex,
tuple_like: bool,
};
pub fn firstToken(cf: ContainerField) TokenIndex {
return cf.comptime_token orelse cf.ast.main_token;
}
pub fn convertToNonTupleLike(cf: *ContainerField, tree: *const Ast) void {
if (!cf.ast.tuple_like) return;
if (tree.nodeTag(cf.ast.type_expr.unwrap().?) != .identifier) return;
cf.ast.type_expr = .none;
cf.ast.tuple_like = false;
}
};
pub const FnProto = struct {
visib_token: ?TokenIndex,
extern_export_inline_token: ?TokenIndex,
lib_name: ?TokenIndex,
name_token: ?TokenIndex,
lparen: TokenIndex,
ast: Components,
pub const Components = struct {
proto_node: Node.Index,
fn_token: TokenIndex,
return_type: Node.OptionalIndex,
params: []const Node.Index,
align_expr: Node.OptionalIndex,
addrspace_expr: Node.OptionalIndex,
section_expr: Node.OptionalIndex,
callconv_expr: Node.OptionalIndex,
};
pub const Param = struct {
first_doc_comment: ?TokenIndex,
name_token: ?TokenIndex,
comptime_noalias: ?TokenIndex,
anytype_ellipsis3: ?TokenIndex,
type_expr: ?Node.Index,
};
pub fn firstToken(fn_proto: FnProto) TokenIndex {
return fn_proto.visib_token orelse
fn_proto.extern_export_inline_token orelse
fn_proto.ast.fn_token;
}
/// Abstracts over the fact that anytype and ... are not included
/// in the params slice, since they are simple identifiers and
/// not sub-expressions.
pub const Iterator = struct {
tree: *const Ast,
fn_proto: *const FnProto,
param_i: usize,
tok_i: TokenIndex,
tok_flag: bool,
pub fn next(it: *Iterator) ?Param {
const tree = it.tree;
while (true) {
var first_doc_comment: ?TokenIndex = null;
var comptime_noalias: ?TokenIndex = null;
var name_token: ?TokenIndex = null;
if (!it.tok_flag) {
if (it.param_i >= it.fn_proto.ast.params.len) {
return null;
}
const param_type = it.fn_proto.ast.params[it.param_i];
var tok_i = tree.firstToken(param_type) - 1;
while (true) : (tok_i -= 1) switch (tree.tokenTag(tok_i)) {
.colon => continue,
.identifier => name_token = tok_i,
.doc_comment => first_doc_comment = tok_i,
.keyword_comptime, .keyword_noalias => comptime_noalias = tok_i,
else => break,
};
it.param_i += 1;
it.tok_i = tree.lastToken(param_type) + 1;
// Look for anytype and ... params afterwards.
if (tree.tokenTag(it.tok_i) == .comma) {
it.tok_i += 1;
}
it.tok_flag = true;
return Param{
.first_doc_comment = first_doc_comment,
.comptime_noalias = comptime_noalias,
.name_token = name_token,
.anytype_ellipsis3 = null,
.type_expr = param_type,
};
}
if (tree.tokenTag(it.tok_i) == .comma) {
it.tok_i += 1;
}
if (tree.tokenTag(it.tok_i) == .r_paren) {
return null;
}
if (tree.tokenTag(it.tok_i) == .doc_comment) {
first_doc_comment = it.tok_i;
while (tree.tokenTag(it.tok_i) == .doc_comment) {
it.tok_i += 1;
}
}
switch (tree.tokenTag(it.tok_i)) {
.ellipsis3 => {
it.tok_flag = false; // Next iteration should return null.
return Param{
.first_doc_comment = first_doc_comment,
.comptime_noalias = null,
.name_token = null,
.anytype_ellipsis3 = it.tok_i,
.type_expr = null,
};
},
.keyword_noalias, .keyword_comptime => {
comptime_noalias = it.tok_i;
it.tok_i += 1;
},
else => {},
}
if (tree.tokenTag(it.tok_i) == .identifier and
tree.tokenTag(it.tok_i + 1) == .colon)
{
name_token = it.tok_i;
it.tok_i += 2;
}
if (tree.tokenTag(it.tok_i) == .keyword_anytype) {
it.tok_i += 1;
return Param{
.first_doc_comment = first_doc_comment,
.comptime_noalias = comptime_noalias,
.name_token = name_token,
.anytype_ellipsis3 = it.tok_i - 1,
.type_expr = null,
};
}
it.tok_flag = false;
}
}
};
pub fn iterate(fn_proto: *const FnProto, tree: *const Ast) Iterator {
return .{
.tree = tree,
.fn_proto = fn_proto,
.param_i = 0,
.tok_i = fn_proto.lparen + 1,
.tok_flag = true,
};
}
};
pub const StructInit = struct {
ast: Components,
pub const Components = struct {
lbrace: TokenIndex,
fields: []const Node.Index,
type_expr: Node.OptionalIndex,
};
};
pub const ArrayInit = struct {
ast: Components,
pub const Components = struct {
lbrace: TokenIndex,
elements: []const Node.Index,
type_expr: Node.OptionalIndex,
};
};
pub const ArrayType = struct {
ast: Components,
pub const Components = struct {
lbracket: TokenIndex,
elem_count: Node.Index,
sentinel: Node.OptionalIndex,
elem_type: Node.Index,
};
};
pub const PtrType = struct {
size: std.builtin.Type.Pointer.Size,
allowzero_token: ?TokenIndex,
const_token: ?TokenIndex,
volatile_token: ?TokenIndex,
ast: Components,
pub const Components = struct {
main_token: TokenIndex,
align_node: Node.OptionalIndex,
addrspace_node: Node.OptionalIndex,
sentinel: Node.OptionalIndex,
bit_range_start: Node.OptionalIndex,
bit_range_end: Node.OptionalIndex,
child_type: Node.Index,
};
};
pub const Slice = struct {
ast: Components,
pub const Components = struct {
sliced: Node.Index,
lbracket: TokenIndex,
start: Node.Index,
end: Node.OptionalIndex,
sentinel: Node.OptionalIndex,
};
};
pub const ContainerDecl = struct {
layout_token: ?TokenIndex,
ast: Components,
pub const Components = struct {
main_token: TokenIndex,
/// Populated when main_token is Keyword_union.
enum_token: ?TokenIndex,
members: []const Node.Index,
arg: Node.OptionalIndex,
};
};
pub const Switch = struct {
ast: Components,
label_token: ?TokenIndex,
pub const Components = struct {
switch_token: TokenIndex,
condition: Node.Index,
cases: []const Node.Index,
};
};
pub const SwitchCase = struct {
inline_token: ?TokenIndex,
/// Points to the first token after the `|`. Will either be an identifier or
/// a `*` (with an identifier immediately after it).
payload_token: ?TokenIndex,
ast: Components,
pub const Components = struct {
/// If empty, this is an else case
values: []const Node.Index,
arrow_token: TokenIndex,
target_expr: Node.Index,
};
};
pub const Asm = struct {
ast: Components,
volatile_token: ?TokenIndex,
first_clobber: ?TokenIndex,
outputs: []const Node.Index,
inputs: []const Node.Index,
pub const Components = struct {
asm_token: TokenIndex,
template: Node.Index,
items: []const Node.Index,
rparen: TokenIndex,
};
};
pub const Call = struct {
ast: Components,
async_token: ?TokenIndex,
pub const Components = struct {
lparen: TokenIndex,
fn_expr: Node.Index,
params: []const Node.Index,
};
};
};
pub const Error = struct {
tag: Tag,
is_note: bool = false,
/// True if `token` points to the token before the token causing an issue.
token_is_prev: bool = false,
token: TokenIndex,
extra: union {
none: void,
expected_tag: Token.Tag,
offset: usize,
} = .{ .none = {} },
pub const Tag = enum {
asterisk_after_ptr_deref,
chained_comparison_operators,
decl_between_fields,
expected_block,
expected_block_or_assignment,
expected_block_or_expr,
expected_block_or_field,
expected_container_members,
expected_expr,
expected_expr_or_assignment,
expected_expr_or_var_decl,
expected_fn,
expected_inlinable,
expected_labelable,
expected_param_list,
expected_prefix_expr,
expected_primary_type_expr,
expected_pub_item,
expected_return_type,
expected_semi_or_else,
expected_semi_or_lbrace,
expected_statement,
expected_suffix_op,
expected_type_expr,
expected_var_decl,
expected_var_decl_or_fn,
expected_loop_payload,
expected_container,
extern_fn_body,
extra_addrspace_qualifier,
extra_align_qualifier,
extra_allowzero_qualifier,
extra_const_qualifier,
extra_volatile_qualifier,
ptr_mod_on_array_child_type,
invalid_bit_range,
same_line_doc_comment,
unattached_doc_comment,
test_doc_comment,
comptime_doc_comment,
varargs_nonfinal,
expected_continue_expr,
expected_semi_after_decl,
expected_semi_after_stmt,
expected_comma_after_field,
expected_comma_after_arg,
expected_comma_after_param,
expected_comma_after_initializer,
expected_comma_after_switch_prong,
expected_comma_after_for_operand,
expected_comma_after_capture,
expected_initializer,
mismatched_binary_op_whitespace,
invalid_ampersand_ampersand,
c_style_container,
expected_var_const,
wrong_equal_var_decl,
var_const_decl,
extra_for_capture,
for_input_not_captured,
zig_style_container,
previous_field,
next_field,
/// `expected_tag` is populated.
expected_token,
/// `offset` is populated
invalid_byte,
};
};
/// Index into `extra_data`.
pub const ExtraIndex = enum(u32) {
_,
};
pub const Node = struct {
tag: Tag,
main_token: TokenIndex,
data: Data,
/// Index into `nodes`.
pub const Index = enum(u32) {
root = 0,
_,
pub fn toOptional(i: Index) OptionalIndex {
const result: OptionalIndex = @enumFromInt(@intFromEnum(i));
assert(result != .none);
return result;
}
pub fn toOffset(base: Index, destination: Index) Offset {
const base_i64: i64 = @intFromEnum(base);
const destination_i64: i64 = @intFromEnum(destination);
return @enumFromInt(destination_i64 - base_i64);
}
};
/// Index into `nodes`, or null.
pub const OptionalIndex = enum(u32) {
root = 0,
none = std.math.maxInt(u32),
_,
pub fn unwrap(oi: OptionalIndex) ?Index {
return if (oi == .none) null else @enumFromInt(@intFromEnum(oi));
}
pub fn fromOptional(oi: ?Index) OptionalIndex {
return if (oi) |i| i.toOptional() else .none;
}
};
/// A relative node index.
pub const Offset = enum(i32) {
zero = 0,
_,
pub fn toOptional(o: Offset) OptionalOffset {
const result: OptionalOffset = @enumFromInt(@intFromEnum(o));
assert(result != .none);
return result;
}
pub fn toAbsolute(offset: Offset, base: Index) Index {
return @enumFromInt(@as(i64, @intFromEnum(base)) + @intFromEnum(offset));
}
};
/// A relative node index, or null.
pub const OptionalOffset = enum(i32) {
none = std.math.maxInt(i32),
_,
pub fn unwrap(oo: OptionalOffset) ?Offset {
return if (oo == .none) null else @enumFromInt(@intFromEnum(oo));
}
};
comptime {
// Goal is to keep this under one byte for efficiency.
assert(@sizeOf(Tag) == 1);
if (!std.debug.runtime_safety) {
assert(@sizeOf(Data) == 8);
}
}
/// The FooComma/FooSemicolon variants exist to ease the implementation of
/// `Ast.lastToken()`
pub const Tag = enum {
/// The root node which is guaranteed to be at `Node.Index.root`.
/// The meaning of the `data` field depends on whether it is a `.zig` or
/// `.zon` file.
///
/// The `main_token` field is the first token for the source file.
root,
/// `usingnamespace expr;`.
///
/// The `data` field is a `.node` to expr.
///
/// The `main_token` field is the `usingnamespace` token.
@"usingnamespace",
/// `test {}`,
/// `test "name" {}`,
/// `test identifier {}`.
///
/// The `data` field is a `.opt_token_and_node`:
/// 1. a `OptionalTokenIndex` to the test name token (must be string literal or identifier), if any.
/// 2. a `Node.Index` to the block.
///
/// The `main_token` field is the `test` token.
test_decl,
/// The `data` field is a `.extra_and_opt_node`:
/// 1. a `ExtraIndex` to `GlobalVarDecl`.
/// 2. a `Node.OptionalIndex` to the initialization expression.
///
/// The `main_token` field is the `var` or `const` token.
///
/// The initialization expression can't be `.none` unless it is part of
/// a `assign_destructure` node or a parsing error occured.
global_var_decl,
/// `var a: b align(c) = d`.
/// `const main_token: type_node align(align_node) = init_expr`.
///
/// The `data` field is a `.extra_and_opt_node`:
/// 1. a `ExtraIndex` to `LocalVarDecl`.
/// 2. a `Node.OptionalIndex` to the initialization expression-
///
/// The `main_token` field is the `var` or `const` token.
///
/// The initialization expression can't be `.none` unless it is part of
/// a `assign_destructure` node or a parsing error occured.
local_var_decl,
/// `var a: b = c`.
/// `const name_token: type_expr = init_expr`.
/// Can be local or global.
///
/// The `data` field is a `.opt_node_and_opt_node`:
/// 1. a `Node.OptionalIndex` to the type expression, if any.
/// 2. a `Node.OptionalIndex` to the initialization expression.
///
/// The `main_token` field is the `var` or `const` token.
///
/// The initialization expression can't be `.none` unless it is part of
/// a `assign_destructure` node or a parsing error occured.
simple_var_decl,
/// `var a align(b) = c`.
/// `const name_token align(align_expr) = init_expr`.
/// Can be local or global.
///
/// The `data` field is a `.node_and_opt_node`:
/// 1. a `Node.Index` to the alignment expression.
/// 2. a `Node.OptionalIndex` to the initialization expression.
///
/// The `main_token` field is the `var` or `const` token.
///
/// The initialization expression can't be `.none` unless it is part of
/// a `assign_destructure` node or a parsing error occured.
aligned_var_decl,
/// `errdefer expr`,
/// `errdefer |payload| expr`.
///
/// The `data` field is a `.opt_token_and_node`:
/// 1. a `OptionalTokenIndex` to the payload identifier, if any.
/// 2. a `Node.Index` to the deferred expression.
///
/// The `main_token` field is the `errdefer` token.
@"errdefer",
/// `defer expr`.
///
/// The `data` field is a `.node` to the deferred expression.
///
/// The `main_token` field is the `defer`.
@"defer",
/// `lhs catch rhs`,
/// `lhs catch |err| rhs`.
///
/// The `main_token` field is the `catch` token.
///
/// The error payload is determined by looking at the next token after
/// the `catch` token.
@"catch",
/// `lhs.a`.
///
/// The `data` field is a `.node_and_token`:
/// 1. a `Node.Index` to the left side of the field access.
/// 2. a `TokenIndex` to the field name identifier.
///
/// The `main_token` field is the `.` token.
field_access,
/// `lhs.?`.
///
/// The `data` field is a `.node_and_token`:
/// 1. a `Node.Index` to the left side of the optional unwrap.
/// 2. a `TokenIndex` to the `?` token.
///
/// The `main_token` field is the `.` token.
unwrap_optional,
/// `lhs == rhs`. The `main_token` field is the `==` token.
equal_equal,
/// `lhs != rhs`. The `main_token` field is the `!=` token.
bang_equal,
/// `lhs < rhs`. The `main_token` field is the `<` token.
less_than,
/// `lhs > rhs`. The `main_token` field is the `>` token.
greater_than,
/// `lhs <= rhs`. The `main_token` field is the `<=` token.
less_or_equal,
/// `lhs >= rhs`. The `main_token` field is the `>=` token.
greater_or_equal,
/// `lhs *= rhs`. The `main_token` field is the `*=` token.
assign_mul,
/// `lhs /= rhs`. The `main_token` field is the `/=` token.
assign_div,
/// `lhs %= rhs`. The `main_token` field is the `%=` token.
assign_mod,
/// `lhs += rhs`. The `main_token` field is the `+=` token.
assign_add,
/// `lhs -= rhs`. The `main_token` field is the `-=` token.
assign_sub,
/// `lhs <<= rhs`. The `main_token` field is the `<<=` token.
assign_shl,
/// `lhs <<|= rhs`. The `main_token` field is the `<<|=` token.
assign_shl_sat,
/// `lhs >>= rhs`. The `main_token` field is the `>>=` token.
assign_shr,
/// `lhs &= rhs`. The `main_token` field is the `&=` token.
assign_bit_and,
/// `lhs ^= rhs`. The `main_token` field is the `^=` token.
assign_bit_xor,
/// `lhs |= rhs`. The `main_token` field is the `|=` token.
assign_bit_or,
/// `lhs *%= rhs`. The `main_token` field is the `*%=` token.
assign_mul_wrap,
/// `lhs +%= rhs`. The `main_token` field is the `+%=` token.
assign_add_wrap,
/// `lhs -%= rhs`. The `main_token` field is the `-%=` token.
assign_sub_wrap,
/// `lhs *|= rhs`. The `main_token` field is the `*%=` token.
assign_mul_sat,
/// `lhs +|= rhs`. The `main_token` field is the `+|=` token.
assign_add_sat,
/// `lhs -|= rhs`. The `main_token` field is the `-|=` token.
assign_sub_sat,
/// `lhs = rhs`. The `main_token` field is the `=` token.
assign,
/// `a, b, ... = rhs`.
///
/// The `data` field is a `.extra_and_node`:
/// 1. a `ExtraIndex`. Further explained below.
/// 2. a `Node.Index` to the initialization expression.
///
/// The `main_token` field is the `=` token.
///
/// The `ExtraIndex` stores the following data:
/// ```
/// elem_count: u32,
/// variables: [elem_count]Node.Index,
/// ```
///
/// Each node in `variables` has one of the following tags:
/// - `global_var_decl`
/// - `local_var_decl`
/// - `simple_var_decl`
/// - `aligned_var_decl`
/// - Any expression node
///
/// The first 4 tags correspond to a `var` or `const` lhs node (note
/// that their initialization expression is always `.none`).
/// An expression node corresponds to a standard assignment LHS (which
/// must be evaluated as an lvalue). There may be a preceding
/// `comptime` token, which does not create a corresponding `comptime`
/// node so must be manually detected.
assign_destructure,
/// `lhs || rhs`. The `main_token` field is the `||` token.
merge_error_sets,
/// `lhs * rhs`. The `main_token` field is the `*` token.
mul,
/// `lhs / rhs`. The `main_token` field is the `/` token.
div,
/// `lhs % rhs`. The `main_token` field is the `%` token.
mod,
/// `lhs ** rhs`. The `main_token` field is the `**` token.
array_mult,
/// `lhs *% rhs`. The `main_token` field is the `*%` token.
mul_wrap,
/// `lhs *| rhs`. The `main_token` field is the `*|` token.
mul_sat,
/// `lhs + rhs`. The `main_token` field is the `+` token.
add,
/// `lhs - rhs`. The `main_token` field is the `-` token.
sub,
/// `lhs ++ rhs`. The `main_token` field is the `++` token.
array_cat,
/// `lhs +% rhs`. The `main_token` field is the `+%` token.
add_wrap,
/// `lhs -% rhs`. The `main_token` field is the `-%` token.
sub_wrap,
/// `lhs +| rhs`. The `main_token` field is the `+|` token.
add_sat,
/// `lhs -| rhs`. The `main_token` field is the `-|` token.
sub_sat,
/// `lhs << rhs`. The `main_token` field is the `<<` token.
shl,
/// `lhs <<| rhs`. The `main_token` field is the `<<|` token.
shl_sat,
/// `lhs >> rhs`. The `main_token` field is the `>>` token.
shr,
/// `lhs & rhs`. The `main_token` field is the `&` token.
bit_and,
/// `lhs ^ rhs`. The `main_token` field is the `^` token.
bit_xor,
/// `lhs | rhs`. The `main_token` field is the `|` token.
bit_or,
/// `lhs orelse rhs`. The `main_token` field is the `orelse` token.
@"orelse",
/// `lhs and rhs`. The `main_token` field is the `and` token.
bool_and,
/// `lhs or rhs`. The `main_token` field is the `or` token.
bool_or,
/// `!expr`. The `main_token` field is the `!` token.
bool_not,
/// `-expr`. The `main_token` field is the `-` token.
negation,
/// `~expr`. The `main_token` field is the `~` token.
bit_not,
/// `-%expr`. The `main_token` field is the `-%` token.
negation_wrap,
/// `&expr`. The `main_token` field is the `&` token.
address_of,
/// `try expr`. The `main_token` field is the `try` token.
@"try",
/// `await expr`. The `main_token` field is the `await` token.
@"await",
/// `?expr`. The `main_token` field is the `?` token.
optional_type,
/// `[lhs]rhs`. The `main_token` field is the `[` token.
array_type,
/// `[lhs:a]b`.
///
/// The `data` field is a `.node_and_extra`:
/// 1. a `Node.Index` to the length expression.
/// 2. a `ExtraIndex` to `ArrayTypeSentinel`.
///
/// The `main_token` field is the `[` token.
array_type_sentinel,
/// `[*]align(lhs) rhs`,
/// `*align(lhs) rhs`,
/// `[]rhs`.
///
/// The `data` field is a `.opt_node_and_node`:
/// 1. a `Node.OptionalIndex` to the alignment expression, if any.
/// 2. a `Node.Index` to the element type expression.
///
/// The `main_token` is the asterisk if a single item pointer or the
/// lbracket if a slice, many-item pointer, or C-pointer.
/// The `main_token` might be a ** token, which is shared with a
/// parent/child pointer type and may require special handling.
ptr_type_aligned,
/// `[*:lhs]rhs`,
/// `*rhs`,
/// `[:lhs]rhs`.
///
/// The `data` field is a `.opt_node_and_node`:
/// 1. a `Node.OptionalIndex` to the sentinel expression, if any.
/// 2. a `Node.Index` to the element type expression.
///
/// The `main_token` is the asterisk if a single item pointer or the
/// lbracket if a slice, many-item pointer, or C-pointer.
/// The `main_token` might be a ** token, which is shared with a
/// parent/child pointer type and may require special handling.
ptr_type_sentinel,
/// The `data` field is a `.opt_node_and_node`:
/// 1. a `ExtraIndex` to `PtrType`.
/// 2. a `Node.Index` to the element type expression.
///
/// The `main_token` is the asterisk if a single item pointer or the
/// lbracket if a slice, many-item pointer, or C-pointer.
/// The `main_token` might be a ** token, which is shared with a
/// parent/child pointer type and may require special handling.
ptr_type,
/// The `data` field is a `.opt_node_and_node`:
/// 1. a `ExtraIndex` to `PtrTypeBitRange`.
/// 2. a `Node.Index` to the element type expression.
///
/// The `main_token` is the asterisk if a single item pointer or the
/// lbracket if a slice, many-item pointer, or C-pointer.
/// The `main_token` might be a ** token, which is shared with a
/// parent/child pointer type and may require special handling.
ptr_type_bit_range,
/// `lhs[rhs..]`
///
/// The `main_token` field is the `[` token.
slice_open,
/// `sliced[start..end]`.
///
/// The `data` field is a `.node_and_extra`:
/// 1. a `Node.Index` to the sliced expression.
/// 2. a `ExtraIndex` to `Slice`.
///
/// The `main_token` field is the `[` token.
slice,
/// `sliced[start..end :sentinel]`,
/// `sliced[start.. :sentinel]`.
///
/// The `data` field is a `.node_and_extra`:
/// 1. a `Node.Index` to the sliced expression.
/// 2. a `ExtraIndex` to `SliceSentinel`.
///
/// The `main_token` field is the `[` token.
slice_sentinel,
/// `expr.*`.
///
/// The `data` field is a `.node` to expr.
///
/// The `main_token` field is the `*` token.
deref,
/// `lhs[rhs]`.
///
/// The `main_token` field is the `[` token.
array_access,
/// `lhs{rhs}`.
///
/// The `main_token` field is the `{` token.
array_init_one,
/// Same as `array_init_one` except there is known to be a trailing
/// comma before the final rbrace.
array_init_one_comma,
/// `.{a}`,
/// `.{a, b}`.
///
/// The `data` field is a `.opt_node_and_opt_node`:
/// 1. a `Node.OptionalIndex` to the first element. Never `.none`
/// 2. a `Node.OptionalIndex` to the second element, if any.
///
/// The `main_token` field is the `{` token.
array_init_dot_two,
/// Same as `array_init_dot_two` except there is known to be a trailing
/// comma before the final rbrace.
array_init_dot_two_comma,
/// `.{a, b, c}`.
///
/// The `data` field is a `.extra_range` that stores a `Node.Index` for
/// each element.
///
/// The `main_token` field is the `{` token.
array_init_dot,
/// Same as `array_init_dot` except there is known to be a trailing
/// comma before the final rbrace.
array_init_dot_comma,
/// `a{b, c}`.
///
/// The `data` field is a `.node_and_extra`:
/// 1. a `Node.Index` to the type expression.
/// 2. a `ExtraIndex` to a `SubRange` that stores a `Node.Index` for
/// each element.
///
/// The `main_token` field is the `{` token.
array_init,
/// Same as `array_init` except there is known to be a trailing comma
/// before the final rbrace.
array_init_comma,
/// `a{.x = b}`, `a{}`.
///
/// The `data` field is a `.node_and_opt_node`:
/// 1. a `Node.Index` to the type expression.
/// 2. a `Node.OptionalIndex` to the first field initialization, if any.
///
/// The `main_token` field is the `{` token.
///
/// The field name is determined by looking at the tokens preceding the
/// field initialization.
struct_init_one,
/// Same as `struct_init_one` except there is known to be a trailing comma
/// before the final rbrace.
struct_init_one_comma,
/// `.{.x = a, .y = b}`.
///
/// The `data` field is a `.opt_node_and_opt_node`:
/// 1. a `Node.OptionalIndex` to the first field initialization. Never `.none`
/// 2. a `Node.OptionalIndex` to the second field initialization, if any.
///
/// The `main_token` field is the '{' token.
///
/// The field name is determined by looking at the tokens preceding the
/// field initialization.
struct_init_dot_two,
/// Same as `struct_init_dot_two` except there is known to be a trailing
/// comma before the final rbrace.
struct_init_dot_two_comma,
/// `.{.x = a, .y = b, .z = c}`.
///
/// The `data` field is a `.extra_range` that stores a `Node.Index` for
/// each field initialization.
///
/// The `main_token` field is the `{` token.
///
/// The field name is determined by looking at the tokens preceding the
/// field initialization.
struct_init_dot,
/// Same as `struct_init_dot` except there is known to be a trailing
/// comma before the final rbrace.
struct_init_dot_comma,
/// `a{.x = b, .y = c}`.
///
/// The `data` field is a `.node_and_extra`:
/// 1. a `Node.Index` to the type expression.
/// 2. a `ExtraIndex` to a `SubRange` that stores a `Node.Index` for
/// each field initialization.
///
/// The `main_token` field is the `{` token.
///
/// The field name is determined by looking at the tokens preceding the
/// field initialization.
struct_init,
/// Same as `struct_init` except there is known to be a trailing comma
/// before the final rbrace.
struct_init_comma,
/// `a(b)`, `a()`.
///
/// The `data` field is a `.node_and_opt_node`:
/// 1. a `Node.Index` to the function expression.
/// 2. a `Node.OptionalIndex` to the first argument, if any.
///
/// The `main_token` field is the `(` token.
call_one,
/// Same as `call_one` except there is known to be a trailing comma
/// before the final rparen.
call_one_comma,
/// `async a(b)`, `async a()`.
///
/// The `data` field is a `.node_and_opt_node`:
/// 1. a `Node.Index` to the function expression.
/// 2. a `Node.OptionalIndex` to the first argument, if any.
///
/// The `main_token` field is the `(` token.
async_call_one,
/// Same as `async_call_one` except there is known to be a trailing
/// comma before the final rparen.
async_call_one_comma,
/// `a(b, c, d)`.
///
/// The `data` field is a `.node_and_extra`:
/// 1. a `Node.Index` to the function expression.
/// 2. a `ExtraIndex` to a `SubRange` that stores a `Node.Index` for
/// each argument.
///
/// The `main_token` field is the `(` token.
call,
/// Same as `call` except there is known to be a trailing comma before
/// the final rparen.
call_comma,
/// `async a(b, c, d)`.
///
/// The `data` field is a `.node_and_extra`:
/// 1. a `Node.Index` to the function expression.
/// 2. a `ExtraIndex` to a `SubRange` that stores a `Node.Index` for
/// each argument.
///
/// The `main_token` field is the `(` token.
async_call,
/// Same as `async_call` except there is known to be a trailing comma
/// before the final rparen.
async_call_comma,
/// `switch(a) {}`.
///
/// The `data` field is a `.node_and_extra`:
/// 1. a `Node.Index` to the switch operand.
/// 2. a `ExtraIndex` to a `SubRange` that stores a `Node.Index` for
/// each switch case.
///
/// `The `main_token` field` is the identifier of a preceding label, if any; otherwise `switch`.
@"switch",
/// Same as `switch` except there is known to be a trailing comma before
/// the final rbrace.
switch_comma,
/// `a => b`,
/// `else => b`.
///
/// The `data` field is a `.opt_node_and_node`:
/// 1. a `Node.OptionalIndex` where `.none` means `else`.
/// 2. a `Node.Index` to the target expression.
///
/// The `main_token` field is the `=>` token.
switch_case_one,
/// Same as `switch_case_one` but the case is inline.
switch_case_inline_one,
/// `a, b, c => d`.
///
/// The `data` field is a `.extra_and_node`:
/// 1. a `ExtraIndex` to a `SubRange` that stores a `Node.Index` for
/// each switch item.
/// 2. a `Node.Index` to the target expression.
///
/// The `main_token` field is the `=>` token.
switch_case,
/// Same as `switch_case` but the case is inline.
switch_case_inline,
/// `lhs...rhs`.
///
/// The `main_token` field is the `...` token.
switch_range,
/// `while (a) b`,
/// `while (a) |x| b`.
while_simple,
/// `while (a) : (b) c`,
/// `while (a) |x| : (b) c`.
while_cont,
/// `while (a) : (b) c else d`,
/// `while (a) |x| : (b) c else d`,
/// `while (a) |x| : (b) c else |y| d`.
/// The continue expression part `: (b)` may be omitted.
@"while",
/// `for (a) b`.
for_simple,
/// `for (lhs[0..inputs]) lhs[inputs + 1] else lhs[inputs + 2]`. `For[rhs]`.
@"for",
/// `lhs..rhs`, `lhs..`.
for_range,
/// `if (a) b`.
/// `if (b) |x| b`.
if_simple,
/// `if (a) b else c`.
/// `if (a) |x| b else c`.
/// `if (a) |x| b else |y| d`.
@"if",
/// `suspend expr`.
///
/// The `data` field is a `.node` to expr.
///
/// The `main_token` field is the `suspend` token.
@"suspend",
/// `resume expr`.
///
/// The `data` field is a `.node` to expr.
///
/// The `main_token` field is the `resume` token.
@"resume",
/// `continue :label expr`,
/// `continue expr`,
/// `continue :label`,
/// `continue`.
///
/// The `data` field is a `.opt_token_and_opt_node`:
/// 1. a `OptionalTokenIndex` to the label identifier, if any.
/// 2. a `Node.OptionalIndex` to the target expression, if any.
///
/// The `main_token` field is the `continue` token.
@"continue",
/// `break :label expr`,
/// `break expr`,
/// `break :label`,
/// `break`.
///
/// The `data` field is a `.opt_token_and_opt_node`:
/// 1. a `OptionalTokenIndex` to the label identifier, if any.
/// 2. a `Node.OptionalIndex` to the target expression, if any.
///
/// The `main_token` field is the `break` token.
@"break",
/// `return expr`, `return`.
///
/// The `data` field is a `.opt_node` to the return value, if any.
///
/// The `main_token` field is the `return` token.
@"return",
/// `fn (a: type_expr) return_type`.
///
/// The `data` field is a `.opt_node_and_opt_node`:
/// 1. a `Node.OptionalIndex` to the first parameter type expression, if any.
/// 2. a `Node.OptionalIndex` to the return type expression. Can't be
/// `.none` unless a parsing error occured.
///
/// The `main_token` field is the `fn` token.
///
/// `anytype` and `...` parameters are omitted from the AST tree.
/// Extern function declarations use this tag.
fn_proto_simple,
/// `fn (a: b, c: d) return_type`.
///
/// The `data` field is a `.extra_and_opt_node`:
/// 1. a `ExtraIndex` to a `SubRange` that stores a `Node.Index` for
/// each parameter type expression.
/// 2. a `Node.OptionalIndex` to the return type expression. Can't be
/// `.none` unless a parsing error occured.
///
/// The `main_token` field is the `fn` token.
///
/// `anytype` and `...` parameters are omitted from the AST tree.
/// Extern function declarations use this tag.
fn_proto_multi,
/// `fn (a: b) addrspace(e) linksection(f) callconv(g) return_type`.
/// zero or one parameters.
///
/// The `data` field is a `.extra_and_opt_node`:
/// 1. a `Node.ExtraIndex` to `FnProtoOne`.
/// 2. a `Node.OptionalIndex` to the return type expression. Can't be
/// `.none` unless a parsing error occured.
///
/// The `main_token` field is the `fn` token.
///
/// `anytype` and `...` parameters are omitted from the AST tree.
/// Extern function declarations use this tag.
fn_proto_one,
/// `fn (a: b, c: d) addrspace(e) linksection(f) callconv(g) return_type`.
///
/// The `data` field is a `.extra_and_opt_node`:
/// 1. a `Node.ExtraIndex` to `FnProto`.
/// 2. a `Node.OptionalIndex` to the return type expression. Can't be
/// `.none` unless a parsing error occured.
///
/// The `main_token` field is the `fn` token.
///
/// `anytype` and `...` parameters are omitted from the AST tree.
/// Extern function declarations use this tag.
fn_proto,
/// Extern function declarations use the fn_proto tags rather than this one.
///
/// The `data` field is a `.node_and_node`:
/// 1. a `Node.Index` to `fn_proto_*`.
/// 2. a `Node.Index` to function body block.
///
/// The `main_token` field is the `fn` token.
fn_decl,
/// `anyframe->return_type`.
///
/// The `data` field is a `.token_and_node`:
/// 1. a `TokenIndex` to the `->` token.
/// 2. a `Node.Index` to the function frame return type expression.
///
/// The `main_token` field is the `anyframe` token.
anyframe_type,
/// The `data` field is unused.
anyframe_literal,
/// The `data` field is unused.
char_literal,
/// The `data` field is unused.
number_literal,
/// The `data` field is unused.
unreachable_literal,
/// The `data` field is unused.
///
/// Most identifiers will not have explicit AST nodes, however for
/// expressions which could be one of many different kinds of AST nodes,
/// there will be an identifier AST node for it.
identifier,
/// `.foo`.
///
/// The `data` field is unused.
///
/// The `main_token` field is the identifier.
enum_literal,
/// The `data` field is unused.
///
/// The `main_token` field is the string literal token.
string_literal,
/// The `data` field is a `.token_and_token`:
/// 1. a `TokenIndex` to the first `.multiline_string_literal_line` token.
/// 2. a `TokenIndex` to the last `.multiline_string_literal_line` token.
///
/// The `main_token` field is the first token index (redundant with `data`).
multiline_string_literal,
/// `(expr)`.
///
/// The `data` field is a `.node_and_token`:
/// 1. a `Node.Index` to the sub-expression
/// 2. a `TokenIndex` to the `)` token.
///
/// The `main_token` field is the `(` token.
grouped_expression,
/// `@a(b, c)`.
///
/// The `data` field is a `.opt_node_and_opt_node`:
/// 1. a `Node.OptionalIndex` to the first argument, if any.
/// 2. a `Node.OptionalIndex` to the second argument, if any.
///
/// The `main_token` field is the builtin token.
builtin_call_two,
/// Same as `builtin_call_two` except there is known to be a trailing comma
/// before the final rparen.
builtin_call_two_comma,
/// `@a(b, c, d)`.
///
/// The `data` field is a `.extra_range` that stores a `Node.Index` for
/// each argument.
///
/// The `main_token` field is the builtin token.
builtin_call,
/// Same as `builtin_call` except there is known to be a trailing comma
/// before the final rparen.
builtin_call_comma,
/// `error{a, b}`.
///
/// The `data` field is a `.token_and_token`:
/// 1. a `TokenIndex` to the `{` token.
/// 2. a `TokenIndex` to the `}` token.
///
/// The `main_token` field is the `error`.
error_set_decl,
/// `struct {}`, `union {}`, `opaque {}`, `enum {}`.
///
/// The `data` field is a `.extra_range` that stores a `Node.Index` for
/// each container member.
///
/// The `main_token` field is the `struct`, `union`, `opaque` or `enum` token.
container_decl,
/// Same as `container_decl` except there is known to be a trailing
/// comma before the final rbrace.
container_decl_trailing,
/// `struct {lhs, rhs}`, `union {lhs, rhs}`, `opaque {lhs, rhs}`, `enum {lhs, rhs}`.
///
/// The `data` field is a `.opt_node_and_opt_node`:
/// 1. a `Node.OptionalIndex` to the first container member, if any.
/// 2. a `Node.OptionalIndex` to the second container member, if any.
///
/// The `main_token` field is the `struct`, `union`, `opaque` or `enum` token.
container_decl_two,
/// Same as `container_decl_two` except there is known to be a trailing
/// comma before the final rbrace.
container_decl_two_trailing,
/// `struct(arg)`, `union(arg)`, `enum(arg)`.
///
/// The `data` field is a `.node_and_extra`:
/// 1. a `Node.Index` to arg.
/// 2. a `ExtraIndex` to a `SubRange` that stores a `Node.Index` for
/// each container member.
///
/// The `main_token` field is the `struct`, `union` or `enum` token.
container_decl_arg,
/// Same as `container_decl_arg` except there is known to be a trailing
/// comma before the final rbrace.
container_decl_arg_trailing,
/// `union(enum) {}`.
///
/// The `data` field is a `.extra_range` that stores a `Node.Index` for
/// each container member.
///
/// The `main_token` field is the `union` token.
///
/// A tagged union with explicitly provided enums will instead be
/// represented by `container_decl_arg`.
tagged_union,
/// Same as `tagged_union` except there is known to be a trailing comma
/// before the final rbrace.
tagged_union_trailing,
/// `union(enum) {lhs, rhs}`.
///
/// The `data` field is a `.opt_node_and_opt_node`:
/// 1. a `Node.OptionalIndex` to the first container member, if any.
/// 2. a `Node.OptionalIndex` to the second container member, if any.
///
/// The `main_token` field is the `union` token.
///
/// A tagged union with explicitly provided enums will instead be
/// represented by `container_decl_arg`.
tagged_union_two,
/// Same as `tagged_union_two` except there is known to be a trailing
/// comma before the final rbrace.
tagged_union_two_trailing,
/// `union(enum(arg)) {}`.
///
/// The `data` field is a `.node_and_extra`:
/// 1. a `Node.Index` to arg.
/// 2. a `ExtraIndex` to a `SubRange` that stores a `Node.Index` for
/// each container member.
///
/// The `main_token` field is the `union` token.
tagged_union_enum_tag,
/// Same as `tagged_union_enum_tag` except there is known to be a
/// trailing comma before the final rbrace.
tagged_union_enum_tag_trailing,
/// `a: lhs = rhs,`,
/// `a: lhs,`.
///
/// The `data` field is a `.node_and_opt_node`:
/// 1. a `Node.Index` to the field type expression.
/// 2. a `Node.OptionalIndex` to the default value expression, if any.
///
/// The `main_token` field is the field name identifier.
///
/// `lastToken()` does not include the possible trailing comma.
container_field_init,
/// `a: lhs align(rhs),`.
///
/// The `data` field is a `.node_and_node`:
/// 1. a `Node.Index` to the field type expression.
/// 2. a `Node.Index` to the alignment expression.
///
/// The `main_token` field is the field name identifier.
///
/// `lastToken()` does not include the possible trailing comma.
container_field_align,
/// `a: lhs align(c) = d,`.
///
/// The `data` field is a `.node_and_extra`:
/// 1. a `Node.Index` to the field type expression.
/// 2. a `ExtraIndex` to `ContainerField`.
///
/// The `main_token` field is the field name identifier.
///
/// `lastToken()` does not include the possible trailing comma.
container_field,
/// `comptime expr`.
///
/// The `data` field is a `.node` to expr.
///
/// The `main_token` field is the `comptime` token.
@"comptime",
/// `nosuspend expr`.
///
/// The `data` field is a `.node` to expr.
///
/// The `main_token` field is the `nosuspend` token.
@"nosuspend",
/// `{lhs rhs}`.
///
/// The `data` field is a `.opt_node_and_opt_node`:
/// 1. a `Node.OptionalIndex` to the first statement, if any.
/// 2. a `Node.OptionalIndex` to the second statement, if any.
///
/// The `main_token` field is the `{` token.
block_two,
/// Same as `block_two` except there is known to be a trailing
/// comma before the final rbrace.
block_two_semicolon,
/// `{a b}`.
///
/// The `data` field is a `.extra_range` that stores a `Node.Index` for
/// each statement.
///
/// The `main_token` field is the `{` token.
block,
/// Same as `block` except there is known to be a trailing comma before
/// the final rbrace.
block_semicolon,
/// `asm(lhs)`.
///
/// rhs is a `Token.Index` to the `)` token.
/// The `main_token` field is the `asm` token.
asm_simple,
/// `asm(lhs, a)`.
///
/// The `data` field is a `.node_and_extra`:
/// 1. a `Node.Index` to lhs.
/// 2. a `ExtraIndex` to `Asm`.
///
/// The `main_token` field is the `asm` token.
@"asm",
/// `[a] "b" (c)`.
/// `[a] "b" (-> lhs)`.
///
/// The `data` field is a `.opt_node_and_token`:
/// 1. a `Node.OptionalIndex` to lhs, if any.
/// 2. a `TokenIndex` to the `)` token.
///
/// The `main_token` field is `a`.
asm_output,
/// `[a] "b" (lhs)`.
///
/// The `data` field is a `.node_and_token`:
/// 1. a `Node.Index` to lhs.
/// 2. a `TokenIndex` to the `)` token.
///
/// The `main_token` field is `a`.
asm_input,
/// `error.a`.
///
/// The `data` field is unused.
///
/// The `main_token` field is `error` token.
error_value,
/// `lhs!rhs`.
///
/// The `main_token` field is the `!` token.
error_union,
pub fn isContainerField(tag: Tag) bool {
return switch (tag) {
.container_field_init,
.container_field_align,
.container_field,
=> true,
else => false,
};
}
};
pub const Data = union {
node: Index,
opt_node: OptionalIndex,
token: TokenIndex,
node_and_node: struct { Index, Index },
opt_node_and_opt_node: struct { OptionalIndex, OptionalIndex },
node_and_opt_node: struct { Index, OptionalIndex },
opt_node_and_node: struct { OptionalIndex, Index },
node_and_extra: struct { Index, ExtraIndex },
extra_and_node: struct { ExtraIndex, Index },
extra_and_opt_node: struct { ExtraIndex, OptionalIndex },
node_and_token: struct { Index, TokenIndex },
token_and_node: struct { TokenIndex, Index },
token_and_token: struct { TokenIndex, TokenIndex },
opt_node_and_token: struct { OptionalIndex, TokenIndex },
opt_token_and_node: struct { OptionalTokenIndex, Index },
opt_token_and_opt_node: struct { OptionalTokenIndex, OptionalIndex },
opt_token_and_opt_token: struct { OptionalTokenIndex, OptionalTokenIndex },
@"for": struct { ExtraIndex, For },
extra_range: SubRange,
};
pub const LocalVarDecl = struct {
type_node: Index,
align_node: Index,
};
pub const ArrayTypeSentinel = struct {
sentinel: Index,
elem_type: Index,
};
pub const PtrType = struct {
sentinel: OptionalIndex,
align_node: OptionalIndex,
addrspace_node: OptionalIndex,
};
pub const PtrTypeBitRange = struct {
sentinel: OptionalIndex,
align_node: Index,
addrspace_node: OptionalIndex,
bit_range_start: Index,
bit_range_end: Index,
};
pub const SubRange = struct {
/// Index into extra_data.
start: ExtraIndex,
/// Index into extra_data.
end: ExtraIndex,
};
pub const If = struct {
then_expr: Index,
else_expr: Index,
};
pub const ContainerField = struct {
align_expr: Index,
value_expr: Index,
};
pub const GlobalVarDecl = struct {
/// Populated if there is an explicit type ascription.
type_node: OptionalIndex,
/// Populated if align(A) is present.
align_node: OptionalIndex,
/// Populated if addrspace(A) is present.
addrspace_node: OptionalIndex,
/// Populated if linksection(A) is present.
section_node: OptionalIndex,
};
pub const Slice = struct {
start: Index,
end: Index,
};
pub const SliceSentinel = struct {
start: Index,
/// May be .none if the slice is "open"
end: OptionalIndex,
sentinel: Index,
};
pub const While = struct {
cont_expr: OptionalIndex,
then_expr: Index,
else_expr: Index,
};
pub const WhileCont = struct {
cont_expr: Index,
then_expr: Index,
};
pub const For = packed struct(u32) {
inputs: u31,
has_else: bool,
};
pub const FnProtoOne = struct {
/// Populated if there is exactly 1 parameter. Otherwise there are 0 parameters.
param: OptionalIndex,
/// Populated if align(A) is present.
align_expr: OptionalIndex,
/// Populated if addrspace(A) is present.
addrspace_expr: OptionalIndex,
/// Populated if linksection(A) is present.
section_expr: OptionalIndex,
/// Populated if callconv(A) is present.
callconv_expr: OptionalIndex,
};
pub const FnProto = struct {
params_start: ExtraIndex,
params_end: ExtraIndex,
/// Populated if align(A) is present.
align_expr: OptionalIndex,
/// Populated if addrspace(A) is present.
addrspace_expr: OptionalIndex,
/// Populated if linksection(A) is present.
section_expr: OptionalIndex,
/// Populated if callconv(A) is present.
callconv_expr: OptionalIndex,
};
pub const Asm = struct {
items_start: ExtraIndex,
items_end: ExtraIndex,
/// Needed to make lastToken() work.
rparen: TokenIndex,
};
};
pub fn nodeToSpan(tree: *const Ast, node: Ast.Node.Index) Span {
return tokensToSpan(
tree,
tree.firstToken(node),
tree.lastToken(node),
tree.nodeMainToken(node),
);
}
pub fn tokenToSpan(tree: *const Ast, token: Ast.TokenIndex) Span {
return tokensToSpan(tree, token, token, token);
}
pub fn tokensToSpan(tree: *const Ast, start: Ast.TokenIndex, end: Ast.TokenIndex, main: Ast.TokenIndex) Span {
var start_tok = start;
var end_tok = end;
if (tree.tokensOnSameLine(start, end)) {
// do nothing
} else if (tree.tokensOnSameLine(start, main)) {
end_tok = main;
} else if (tree.tokensOnSameLine(main, end)) {
start_tok = main;
} else {
start_tok = main;
end_tok = main;
}
const start_off = tree.tokenStart(start_tok);
const end_off = tree.tokenStart(end_tok) + @as(u32, @intCast(tree.tokenSlice(end_tok).len));
return Span{ .start = start_off, .end = end_off, .main = tree.tokenStart(main) };
}
const std = @import("../std.zig");
const assert = std.debug.assert;
const testing = std.testing;
const mem = std.mem;
const Token = std.zig.Token;
const Ast = @This();
const Allocator = std.mem.Allocator;
const Parse = @import("Parse.zig");
const private_render = @import("./render.zig");
test {
_ = Parse;
_ = private_render;
}