struct Client [src]
Alias for std.crypto.tls.Client
Fields
input: *ReaderThe encrypted stream from the server to the client. Bytes are pulled from
here via reader.
The buffer is asserted to have capacity at least min_buffer_len.
reader: ReaderDecrypted stream from the server to the client.
output: *WriterThe encrypted stream from the client to the server. Bytes are pushed here
via writer.
The buffer is asserted to have capacity at least min_buffer_len.
writer: WriterThe plaintext stream from the client to the server.
alert: ?tls.Alert = nullPopulated when error.TlsAlert is returned.
read_err: ?ReadError = null
tls_version: tls.ProtocolVersion
read_seq: u64
write_seq: u64
received_close_notify: boolWhen this is true, the stream may still not be at the end because there
may be data in the input buffer.
allow_truncation_attacks: bool
application_cipher: tls.ApplicationCipher
ssl_key_log: ?*SslKeyLogIf non-null, ssl secrets are logged to a stream. Creating such a log file
allows other programs with access to that file to decrypt all traffic over
this connection.
Members
Source
const builtin = @import("builtin");
const native_endian = builtin.cpu.arch.endian();
const std = @import("../../std.zig");
const tls = std.crypto.tls;
const Client = @This();
const mem = std.mem;
const crypto = std.crypto;
const assert = std.debug.assert;
const Certificate = std.crypto.Certificate;
const Reader = std.Io.Reader;
const Writer = std.Io.Writer;
const max_ciphertext_len = tls.max_ciphertext_len;
const hmacExpandLabel = tls.hmacExpandLabel;
const hkdfExpandLabel = tls.hkdfExpandLabel;
const int = tls.int;
const array = tls.array;
/// The encrypted stream from the server to the client. Bytes are pulled from
/// here via `reader`.
///
/// The buffer is asserted to have capacity at least `min_buffer_len`.
input: *Reader,
/// Decrypted stream from the server to the client.
reader: Reader,
/// The encrypted stream from the client to the server. Bytes are pushed here
/// via `writer`.
///
/// The buffer is asserted to have capacity at least `min_buffer_len`.
output: *Writer,
/// The plaintext stream from the client to the server.
writer: Writer,
/// Populated when `error.TlsAlert` is returned.
alert: ?tls.Alert = null,
read_err: ?ReadError = null,
tls_version: tls.ProtocolVersion,
read_seq: u64,
write_seq: u64,
/// When this is true, the stream may still not be at the end because there
/// may be data in the input buffer.
received_close_notify: bool,
allow_truncation_attacks: bool,
application_cipher: tls.ApplicationCipher,
/// If non-null, ssl secrets are logged to a stream. Creating such a log file
/// allows other programs with access to that file to decrypt all traffic over
/// this connection.
ssl_key_log: ?*SslKeyLog,
pub const ReadError = error{
/// The alert description will be stored in `alert`.
TlsAlert,
TlsBadLength,
TlsBadRecordMac,
TlsConnectionTruncated,
TlsDecodeError,
TlsRecordOverflow,
TlsUnexpectedMessage,
TlsIllegalParameter,
TlsSequenceOverflow,
};
pub const SslKeyLog = struct {
client_key_seq: u64,
server_key_seq: u64,
client_random: [32]u8,
writer: *Writer,
fn clientCounter(key_log: *@This()) u64 {
defer key_log.client_key_seq += 1;
return key_log.client_key_seq;
}
fn serverCounter(key_log: *@This()) u64 {
defer key_log.server_key_seq += 1;
return key_log.server_key_seq;
}
};
/// The `Reader` supplied to `init` requires a buffer capacity
/// at least this amount.
pub const min_buffer_len = tls.max_ciphertext_record_len;
pub const Options = struct {
/// How to perform host verification of server certificates.
host: union(enum) {
/// No host verification is performed, which prevents a trusted connection from
/// being established.
no_verification,
/// Verify that the server certificate was issued for a given host.
explicit: []const u8,
},
/// How to verify the authenticity of server certificates.
ca: union(enum) {
/// No ca verification is performed, which prevents a trusted connection from
/// being established.
no_verification,
/// Verify that the server certificate is a valid self-signed certificate.
/// This provides no authorization guarantees, as anyone can create a
/// self-signed certificate.
self_signed,
/// Verify that the server certificate is authorized by a given ca bundle.
bundle: Certificate.Bundle,
},
/// If non-null, ssl secrets are logged to this stream. Creating such a log file allows
/// other programs with access to that file to decrypt all traffic over this connection.
///
/// Only the `writer` field is observed during the handshake (`init`).
/// After that, the other fields are populated.
ssl_key_log: ?*SslKeyLog = null,
/// By default, reaching the end-of-stream when reading from the server will
/// cause `error.TlsConnectionTruncated` to be returned, unless a close_notify
/// message has been received. By setting this flag to `true`, instead, the
/// end-of-stream will be forwarded to the application layer above TLS.
///
/// This makes the application vulnerable to truncation attacks unless the
/// application layer itself verifies that the amount of data received equals
/// the amount of data expected, such as HTTP with the Content-Length header.
allow_truncation_attacks: bool = false,
write_buffer: []u8,
read_buffer: []u8,
/// Populated when `error.TlsAlert` is returned from `init`.
alert: ?*tls.Alert = null,
};
const InitError = error{
WriteFailed,
ReadFailed,
InsufficientEntropy,
DiskQuota,
LockViolation,
NotOpenForWriting,
/// The alert description will be stored in `alert`.
TlsAlert,
TlsUnexpectedMessage,
TlsIllegalParameter,
TlsDecryptFailure,
TlsRecordOverflow,
TlsBadRecordMac,
CertificateFieldHasInvalidLength,
CertificateHostMismatch,
CertificatePublicKeyInvalid,
CertificateExpired,
CertificateFieldHasWrongDataType,
CertificateIssuerMismatch,
CertificateNotYetValid,
CertificateSignatureAlgorithmMismatch,
CertificateSignatureAlgorithmUnsupported,
CertificateSignatureInvalid,
CertificateSignatureInvalidLength,
CertificateSignatureNamedCurveUnsupported,
CertificateSignatureUnsupportedBitCount,
TlsCertificateNotVerified,
TlsBadSignatureScheme,
TlsBadRsaSignatureBitCount,
InvalidEncoding,
IdentityElement,
SignatureVerificationFailed,
TlsDecryptError,
TlsConnectionTruncated,
TlsDecodeError,
UnsupportedCertificateVersion,
CertificateTimeInvalid,
CertificateHasUnrecognizedObjectId,
CertificateHasInvalidBitString,
MessageTooLong,
NegativeIntoUnsigned,
TargetTooSmall,
BufferTooSmall,
InvalidSignature,
NotSquare,
NonCanonical,
WeakPublicKey,
};
/// Initiates a TLS handshake and establishes a TLSv1.2 or TLSv1.3 session.
///
/// `host` is only borrowed during this function call.
///
/// `input` is asserted to have buffer capacity at least `min_buffer_len`.
pub fn init(input: *Reader, output: *Writer, options: Options) InitError!Client {
assert(input.buffer.len >= min_buffer_len);
const host = switch (options.host) {
.no_verification => "",
.explicit => |host| host,
};
const host_len: u16 = @intCast(host.len);
var random_buffer: [176]u8 = undefined;
crypto.random.bytes(&random_buffer);
const client_hello_rand = random_buffer[0..32].*;
var key_seq: u64 = 0;
var server_hello_rand: [32]u8 = undefined;
const legacy_session_id = random_buffer[32..64].*;
var key_share = KeyShare.init(random_buffer[64..176].*) catch |err| switch (err) {
// Only possible to happen if the seed is all zeroes.
error.IdentityElement => return error.InsufficientEntropy,
};
const extensions_payload = tls.extension(.supported_versions, array(u8, tls.ProtocolVersion, .{
.tls_1_3,
.tls_1_2,
})) ++ tls.extension(.signature_algorithms, array(u16, tls.SignatureScheme, .{
.ecdsa_secp256r1_sha256,
.ecdsa_secp384r1_sha384,
.rsa_pkcs1_sha256,
.rsa_pkcs1_sha384,
.rsa_pkcs1_sha512,
.rsa_pss_rsae_sha256,
.rsa_pss_rsae_sha384,
.rsa_pss_rsae_sha512,
.rsa_pss_pss_sha256,
.rsa_pss_pss_sha384,
.rsa_pss_pss_sha512,
.rsa_pkcs1_sha1,
.ed25519,
})) ++ tls.extension(.supported_groups, array(u16, tls.NamedGroup, .{
.x25519_ml_kem768,
.secp256r1,
.secp384r1,
.x25519,
})) ++ tls.extension(.psk_key_exchange_modes, array(u8, tls.PskKeyExchangeMode, .{
.psk_dhe_ke,
})) ++ tls.extension(.key_share, array(
u16,
u8,
int(u16, @intFromEnum(tls.NamedGroup.x25519_ml_kem768)) ++
array(u16, u8, key_share.ml_kem768_kp.public_key.toBytes() ++ key_share.x25519_kp.public_key) ++
int(u16, @intFromEnum(tls.NamedGroup.secp256r1)) ++
array(u16, u8, key_share.secp256r1_kp.public_key.toUncompressedSec1()) ++
int(u16, @intFromEnum(tls.NamedGroup.secp384r1)) ++
array(u16, u8, key_share.secp384r1_kp.public_key.toUncompressedSec1()) ++
int(u16, @intFromEnum(tls.NamedGroup.x25519)) ++
array(u16, u8, key_share.x25519_kp.public_key),
));
const server_name_extension = int(u16, @intFromEnum(tls.ExtensionType.server_name)) ++
int(u16, 2 + 1 + 2 + host_len) ++ // byte length of this extension payload
int(u16, 1 + 2 + host_len) ++ // server_name_list byte count
.{0x00} ++ // name_type
int(u16, host_len);
const server_name_extension_len = switch (options.host) {
.no_verification => 0,
.explicit => server_name_extension.len + host_len,
};
const extensions_header =
int(u16, @intCast(extensions_payload.len + server_name_extension_len)) ++
extensions_payload ++
server_name_extension;
const client_hello =
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
client_hello_rand ++
[1]u8{32} ++ legacy_session_id ++
cipher_suites ++
array(u8, tls.CompressionMethod, .{.null}) ++
extensions_header;
const out_handshake = .{@intFromEnum(tls.HandshakeType.client_hello)} ++
int(u24, @intCast(client_hello.len - server_name_extension.len + server_name_extension_len)) ++
client_hello;
const cleartext_header_buf = .{@intFromEnum(tls.ContentType.handshake)} ++
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_0)) ++
int(u16, @intCast(out_handshake.len - server_name_extension.len + server_name_extension_len)) ++
out_handshake;
const cleartext_header = switch (options.host) {
.no_verification => cleartext_header_buf[0 .. cleartext_header_buf.len - server_name_extension.len],
.explicit => &cleartext_header_buf,
};
{
var iovecs: [2][]const u8 = .{ cleartext_header, host };
try output.writeVecAll(iovecs[0..if (host.len == 0) 1 else 2]);
try output.flush();
}
var tls_version: tls.ProtocolVersion = undefined;
// These are used for two purposes:
// * Detect whether a certificate is the first one presented, in which case
// we need to verify the host name.
var cert_index: usize = 0;
// * Flip back and forth between the two cleartext buffers in order to keep
// the previous certificate in memory so that it can be verified by the
// next one.
var cert_buf_index: usize = 0;
var write_seq: u64 = 0;
var read_seq: u64 = 0;
var prev_cert: Certificate.Parsed = undefined;
const CipherState = enum {
/// No cipher is in use
cleartext,
/// Handshake cipher is in use
handshake,
/// Application cipher is in use
application,
};
var pending_cipher_state: CipherState = .cleartext;
var cipher_state = pending_cipher_state;
const HandshakeState = enum {
/// In this state we expect only a server hello message.
hello,
/// In this state we expect only an encrypted_extensions message.
encrypted_extensions,
/// In this state we expect certificate handshake messages.
certificate,
/// In this state we expect certificate or certificate_verify messages.
/// certificate messages are ignored since the trust chain is already
/// established.
trust_chain_established,
/// In this state, we expect only the server_hello_done handshake message.
server_hello_done,
/// In this state, we expect only the finished handshake message.
finished,
};
var handshake_state: HandshakeState = .hello;
var handshake_cipher: tls.HandshakeCipher = undefined;
var main_cert_pub_key: CertificatePublicKey = undefined;
var tls12_negotiated_group: ?tls.NamedGroup = null;
const now_sec = std.time.timestamp();
var cleartext_fragment_start: usize = 0;
var cleartext_fragment_end: usize = 0;
var cleartext_bufs: [2][tls.max_ciphertext_inner_record_len]u8 = undefined;
fragment: while (true) {
// Ensure the input buffer pointer is stable in this scope.
input.rebase(tls.max_ciphertext_record_len) catch |err| switch (err) {
error.EndOfStream => {}, // We have assurance the remainder of stream can be buffered.
};
const record_header = input.peek(tls.record_header_len) catch |err| switch (err) {
error.EndOfStream => return error.TlsConnectionTruncated,
error.ReadFailed => return error.ReadFailed,
};
const record_ct = input.takeEnumNonexhaustive(tls.ContentType, .big) catch unreachable; // already peeked
input.toss(2); // legacy_version
const record_len = input.takeInt(u16, .big) catch unreachable; // already peeked
if (record_len > tls.max_ciphertext_len) return error.TlsRecordOverflow;
const record_buffer = input.take(record_len) catch |err| switch (err) {
error.EndOfStream => return error.TlsConnectionTruncated,
error.ReadFailed => return error.ReadFailed,
};
var record_decoder: tls.Decoder = .fromTheirSlice(record_buffer);
var ctd, const ct = content: switch (cipher_state) {
.cleartext => .{ record_decoder, record_ct },
.handshake => {
assert(tls_version == .tls_1_3);
if (record_ct != .application_data) return error.TlsUnexpectedMessage;
try record_decoder.ensure(record_len);
const cleartext_buf = &cleartext_bufs[cert_buf_index % 2];
switch (handshake_cipher) {
inline else => |*p| {
const pv = &p.version.tls_1_3;
const P = @TypeOf(p.*).A;
if (record_len < P.AEAD.tag_length) return error.TlsRecordOverflow;
const ciphertext = record_decoder.slice(record_len - P.AEAD.tag_length);
const cleartext_fragment_buf = cleartext_buf[cleartext_fragment_end..];
if (ciphertext.len > cleartext_fragment_buf.len) return error.TlsRecordOverflow;
const cleartext = cleartext_fragment_buf[0..ciphertext.len];
const auth_tag = record_decoder.array(P.AEAD.tag_length).*;
const nonce = nonce: {
const V = @Vector(P.AEAD.nonce_length, u8);
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
const operand: V = pad ++ @as([8]u8, @bitCast(big(read_seq)));
break :nonce @as(V, pv.server_handshake_iv) ^ operand;
};
P.AEAD.decrypt(cleartext, ciphertext, auth_tag, record_header, nonce, pv.server_handshake_key) catch
return error.TlsBadRecordMac;
// TODO use scalar, non-slice version
cleartext_fragment_end += mem.trimEnd(u8, cleartext, "\x00").len;
},
}
read_seq += 1;
cleartext_fragment_end -= 1;
const ct: tls.ContentType = @enumFromInt(cleartext_buf[cleartext_fragment_end]);
if (ct != .handshake) return error.TlsUnexpectedMessage;
break :content .{ tls.Decoder.fromTheirSlice(@constCast(cleartext_buf[cleartext_fragment_start..cleartext_fragment_end])), ct };
},
.application => {
assert(tls_version == .tls_1_2);
if (record_ct != .handshake) return error.TlsUnexpectedMessage;
try record_decoder.ensure(record_len);
const cleartext_buf = &cleartext_bufs[cert_buf_index % 2];
switch (handshake_cipher) {
inline else => |*p| {
const pv = &p.version.tls_1_2;
const P = @TypeOf(p.*).A;
if (record_len < P.record_iv_length + P.mac_length) return error.TlsRecordOverflow;
const message_len: u16 = record_len - P.record_iv_length - P.mac_length;
const cleartext_fragment_buf = cleartext_buf[cleartext_fragment_end..];
if (message_len > cleartext_fragment_buf.len) return error.TlsRecordOverflow;
const cleartext = cleartext_fragment_buf[0..message_len];
const ad = mem.toBytes(big(read_seq)) ++
record_header[0 .. 1 + 2] ++
mem.toBytes(big(message_len));
const record_iv = record_decoder.array(P.record_iv_length).*;
const masked_read_seq = read_seq &
comptime std.math.shl(u64, std.math.maxInt(u64), 8 * P.record_iv_length);
const nonce: [P.AEAD.nonce_length]u8 = nonce: {
const V = @Vector(P.AEAD.nonce_length, u8);
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
const operand: V = pad ++ @as([8]u8, @bitCast(big(masked_read_seq)));
break :nonce @as(V, pv.app_cipher.server_write_IV ++ record_iv) ^ operand;
};
const ciphertext = record_decoder.slice(message_len);
const auth_tag = record_decoder.array(P.mac_length);
P.AEAD.decrypt(cleartext, ciphertext, auth_tag.*, ad, nonce, pv.app_cipher.server_write_key) catch return error.TlsBadRecordMac;
cleartext_fragment_end += message_len;
},
}
read_seq += 1;
break :content .{ tls.Decoder.fromTheirSlice(cleartext_buf[cleartext_fragment_start..cleartext_fragment_end]), record_ct };
},
};
switch (ct) {
.alert => {
ctd.ensure(2) catch continue :fragment;
if (options.alert) |a| a.* = .{
.level = ctd.decode(tls.Alert.Level),
.description = ctd.decode(tls.Alert.Description),
};
return error.TlsAlert;
},
.change_cipher_spec => {
ctd.ensure(1) catch continue :fragment;
if (ctd.decode(tls.ChangeCipherSpecType) != .change_cipher_spec) return error.TlsIllegalParameter;
cipher_state = pending_cipher_state;
},
.handshake => while (true) {
ctd.ensure(4) catch continue :fragment;
const handshake_type = ctd.decode(tls.HandshakeType);
const handshake_len = ctd.decode(u24);
var hsd = ctd.sub(handshake_len) catch continue :fragment;
const wrapped_handshake = ctd.buf[ctd.idx - handshake_len - 4 .. ctd.idx];
switch (handshake_type) {
.server_hello => {
if (cipher_state != .cleartext) return error.TlsUnexpectedMessage;
if (handshake_state != .hello) return error.TlsUnexpectedMessage;
try hsd.ensure(2 + 32 + 1);
const legacy_version = hsd.decode(u16);
@memcpy(&server_hello_rand, hsd.array(32));
if (mem.eql(u8, &server_hello_rand, &tls.hello_retry_request_sequence)) {
// This is a HelloRetryRequest message. This client implementation
// does not expect to get one.
return error.TlsUnexpectedMessage;
}
const legacy_session_id_echo_len = hsd.decode(u8);
try hsd.ensure(legacy_session_id_echo_len + 2 + 1);
const legacy_session_id_echo = hsd.slice(legacy_session_id_echo_len);
const cipher_suite_tag = hsd.decode(tls.CipherSuite);
hsd.skip(1); // legacy_compression_method
var supported_version: ?u16 = null;
if (!hsd.eof()) {
try hsd.ensure(2);
const extensions_size = hsd.decode(u16);
var all_extd = try hsd.sub(extensions_size);
while (!all_extd.eof()) {
try all_extd.ensure(2 + 2);
const et = all_extd.decode(tls.ExtensionType);
const ext_size = all_extd.decode(u16);
var extd = try all_extd.sub(ext_size);
switch (et) {
.supported_versions => {
if (supported_version) |_| return error.TlsIllegalParameter;
try extd.ensure(2);
supported_version = extd.decode(u16);
},
.key_share => {
if (key_share.getSharedSecret()) |_| return error.TlsIllegalParameter;
try extd.ensure(4);
const named_group = extd.decode(tls.NamedGroup);
const key_size = extd.decode(u16);
try extd.ensure(key_size);
try key_share.exchange(named_group, extd.slice(key_size));
},
else => {},
}
}
}
tls_version = @enumFromInt(supported_version orelse legacy_version);
switch (tls_version) {
.tls_1_3 => if (!mem.eql(u8, legacy_session_id_echo, &legacy_session_id)) return error.TlsIllegalParameter,
.tls_1_2 => if (mem.eql(u8, server_hello_rand[24..31], "DOWNGRD") and
server_hello_rand[31] >> 1 == 0x00) return error.TlsIllegalParameter,
else => return error.TlsIllegalParameter,
}
switch (cipher_suite_tag) {
inline .AES_128_GCM_SHA256,
.AES_256_GCM_SHA384,
.CHACHA20_POLY1305_SHA256,
.AEGIS_256_SHA512,
.AEGIS_128L_SHA256,
.ECDHE_RSA_WITH_AES_128_GCM_SHA256,
.ECDHE_RSA_WITH_AES_256_GCM_SHA384,
.ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
=> |tag| {
handshake_cipher = @unionInit(tls.HandshakeCipher, @tagName(tag.with()), .{
.transcript_hash = .init(.{}),
.version = undefined,
});
const p = &@field(handshake_cipher, @tagName(tag.with()));
p.transcript_hash.update(cleartext_header[tls.record_header_len..]); // Client Hello part 1
p.transcript_hash.update(host); // Client Hello part 2
p.transcript_hash.update(wrapped_handshake);
},
else => return error.TlsIllegalParameter,
}
switch (tls_version) {
.tls_1_3 => {
switch (cipher_suite_tag) {
inline .AES_128_GCM_SHA256,
.AES_256_GCM_SHA384,
.CHACHA20_POLY1305_SHA256,
.AEGIS_256_SHA512,
.AEGIS_128L_SHA256,
=> |tag| {
const sk = key_share.getSharedSecret() orelse return error.TlsIllegalParameter;
const p = &@field(handshake_cipher, @tagName(tag.with()));
const P = @TypeOf(p.*).A;
const hello_hash = p.transcript_hash.peek();
const zeroes = [1]u8{0} ** P.Hash.digest_length;
const early_secret = P.Hkdf.extract(&[1]u8{0}, &zeroes);
const empty_hash = tls.emptyHash(P.Hash);
p.version = .{ .tls_1_3 = undefined };
const pv = &p.version.tls_1_3;
const hs_derived_secret = hkdfExpandLabel(P.Hkdf, early_secret, "derived", &empty_hash, P.Hash.digest_length);
pv.handshake_secret = P.Hkdf.extract(&hs_derived_secret, sk);
const ap_derived_secret = hkdfExpandLabel(P.Hkdf, pv.handshake_secret, "derived", &empty_hash, P.Hash.digest_length);
pv.master_secret = P.Hkdf.extract(&ap_derived_secret, &zeroes);
const client_secret = hkdfExpandLabel(P.Hkdf, pv.handshake_secret, "c hs traffic", &hello_hash, P.Hash.digest_length);
const server_secret = hkdfExpandLabel(P.Hkdf, pv.handshake_secret, "s hs traffic", &hello_hash, P.Hash.digest_length);
if (options.ssl_key_log) |key_log| logSecrets(key_log.writer, .{
.client_random = &client_hello_rand,
}, .{
.SERVER_HANDSHAKE_TRAFFIC_SECRET = &server_secret,
.CLIENT_HANDSHAKE_TRAFFIC_SECRET = &client_secret,
});
pv.client_finished_key = hkdfExpandLabel(P.Hkdf, client_secret, "finished", "", P.Hmac.key_length);
pv.server_finished_key = hkdfExpandLabel(P.Hkdf, server_secret, "finished", "", P.Hmac.key_length);
pv.client_handshake_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length);
pv.server_handshake_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length);
pv.client_handshake_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length);
pv.server_handshake_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length);
},
else => return error.TlsIllegalParameter,
}
pending_cipher_state = .handshake;
handshake_state = .encrypted_extensions;
},
.tls_1_2 => switch (cipher_suite_tag) {
.ECDHE_RSA_WITH_AES_128_GCM_SHA256,
.ECDHE_RSA_WITH_AES_256_GCM_SHA384,
.ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
=> handshake_state = .certificate,
else => return error.TlsIllegalParameter,
},
else => return error.TlsIllegalParameter,
}
},
.encrypted_extensions => {
if (tls_version != .tls_1_3) return error.TlsUnexpectedMessage;
if (cipher_state != .handshake) return error.TlsUnexpectedMessage;
if (handshake_state != .encrypted_extensions) return error.TlsUnexpectedMessage;
switch (handshake_cipher) {
inline else => |*p| p.transcript_hash.update(wrapped_handshake),
}
try hsd.ensure(2);
const total_ext_size = hsd.decode(u16);
var all_extd = try hsd.sub(total_ext_size);
while (!all_extd.eof()) {
try all_extd.ensure(4);
const et = all_extd.decode(tls.ExtensionType);
const ext_size = all_extd.decode(u16);
const extd = try all_extd.sub(ext_size);
_ = extd;
switch (et) {
.server_name => {},
else => {},
}
}
handshake_state = .certificate;
},
.certificate => cert: {
if (cipher_state == .application) return error.TlsUnexpectedMessage;
switch (handshake_state) {
.certificate => {},
.trust_chain_established => break :cert,
else => return error.TlsUnexpectedMessage,
}
switch (handshake_cipher) {
inline else => |*p| p.transcript_hash.update(wrapped_handshake),
}
switch (tls_version) {
.tls_1_3 => {
try hsd.ensure(1 + 3);
const cert_req_ctx_len = hsd.decode(u8);
if (cert_req_ctx_len != 0) return error.TlsIllegalParameter;
},
.tls_1_2 => try hsd.ensure(3),
else => unreachable,
}
const certs_size = hsd.decode(u24);
var certs_decoder = try hsd.sub(certs_size);
while (!certs_decoder.eof()) {
try certs_decoder.ensure(3);
const cert_size = certs_decoder.decode(u24);
const certd = try certs_decoder.sub(cert_size);
if (tls_version == .tls_1_3) {
try certs_decoder.ensure(2);
const total_ext_size = certs_decoder.decode(u16);
const all_extd = try certs_decoder.sub(total_ext_size);
_ = all_extd;
}
const subject_cert: Certificate = .{
.buffer = certd.buf,
.index = @intCast(certd.idx),
};
const subject = try subject_cert.parse();
if (cert_index == 0) {
// Verify the host on the first certificate.
switch (options.host) {
.no_verification => {},
.explicit => try subject.verifyHostName(host),
}
// Keep track of the public key for the
// certificate_verify message later.
try main_cert_pub_key.init(subject.pub_key_algo, subject.pubKey());
} else {
try prev_cert.verify(subject, now_sec);
}
switch (options.ca) {
.no_verification => {
handshake_state = .trust_chain_established;
break :cert;
},
.self_signed => {
try subject.verify(subject, now_sec);
handshake_state = .trust_chain_established;
break :cert;
},
.bundle => |ca_bundle| if (ca_bundle.verify(subject, now_sec)) |_| {
handshake_state = .trust_chain_established;
break :cert;
} else |err| switch (err) {
error.CertificateIssuerNotFound => {},
else => |e| return e,
},
}
prev_cert = subject;
cert_index += 1;
}
cert_buf_index += 1;
},
.server_key_exchange => {
if (tls_version != .tls_1_2) return error.TlsUnexpectedMessage;
if (cipher_state != .cleartext) return error.TlsUnexpectedMessage;
switch (handshake_state) {
.trust_chain_established => {},
.certificate => return error.TlsCertificateNotVerified,
else => return error.TlsUnexpectedMessage,
}
switch (handshake_cipher) {
inline else => |*p| p.transcript_hash.update(wrapped_handshake),
}
try hsd.ensure(1 + 2 + 1);
const curve_type = hsd.decode(u8);
if (curve_type != 0x03) return error.TlsIllegalParameter; // named_curve
const named_group = hsd.decode(tls.NamedGroup);
tls12_negotiated_group = named_group;
const key_size = hsd.decode(u8);
try hsd.ensure(key_size);
const server_pub_key = hsd.slice(key_size);
try main_cert_pub_key.verifySignature(&hsd, &.{ &client_hello_rand, &server_hello_rand, hsd.buf[0..hsd.idx] });
try key_share.exchange(named_group, server_pub_key);
handshake_state = .server_hello_done;
},
.server_hello_done => {
if (tls_version != .tls_1_2) return error.TlsUnexpectedMessage;
if (cipher_state != .cleartext) return error.TlsUnexpectedMessage;
if (handshake_state != .server_hello_done) return error.TlsUnexpectedMessage;
const public_key_bytes: []const u8 = switch (tls12_negotiated_group orelse .secp256r1) {
.secp256r1 => &key_share.secp256r1_kp.public_key.toUncompressedSec1(),
.secp384r1 => &key_share.secp384r1_kp.public_key.toUncompressedSec1(),
.x25519 => &key_share.x25519_kp.public_key,
else => return error.TlsIllegalParameter,
};
const client_key_exchange_prefix = .{@intFromEnum(tls.ContentType.handshake)} ++
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
int(u16, @intCast(public_key_bytes.len + 5)) ++ // record length
.{@intFromEnum(tls.HandshakeType.client_key_exchange)} ++
int(u24, @intCast(public_key_bytes.len + 1)) ++ // handshake message length
.{@as(u8, @intCast(public_key_bytes.len))}; // public key length
const client_change_cipher_spec_msg = .{@intFromEnum(tls.ContentType.change_cipher_spec)} ++
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
array(u16, tls.ChangeCipherSpecType, .{.change_cipher_spec});
const pre_master_secret = key_share.getSharedSecret().?;
switch (handshake_cipher) {
inline else => |*p| {
const P = @TypeOf(p.*).A;
p.transcript_hash.update(wrapped_handshake);
p.transcript_hash.update(client_key_exchange_prefix[tls.record_header_len..]);
p.transcript_hash.update(public_key_bytes);
const master_secret = hmacExpandLabel(P.Hmac, pre_master_secret, &.{
"master secret",
&client_hello_rand,
&server_hello_rand,
}, 48);
if (options.ssl_key_log) |key_log| logSecrets(key_log.writer, .{
.client_random = &client_hello_rand,
}, .{
.CLIENT_RANDOM = &master_secret,
});
const key_block = hmacExpandLabel(
P.Hmac,
&master_secret,
&.{ "key expansion", &server_hello_rand, &client_hello_rand },
@sizeOf(P.Tls_1_2),
);
const client_verify_cleartext = .{@intFromEnum(tls.HandshakeType.finished)} ++
array(u24, u8, hmacExpandLabel(
P.Hmac,
&master_secret,
&.{ "client finished", &p.transcript_hash.peek() },
P.verify_data_length,
));
p.transcript_hash.update(&client_verify_cleartext);
p.version = .{ .tls_1_2 = .{
.expected_server_verify_data = hmacExpandLabel(
P.Hmac,
&master_secret,
&.{ "server finished", &p.transcript_hash.finalResult() },
P.verify_data_length,
),
.app_cipher = mem.bytesToValue(P.Tls_1_2, &key_block),
} };
const pv = &p.version.tls_1_2;
const nonce: [P.AEAD.nonce_length]u8 = nonce: {
const V = @Vector(P.AEAD.nonce_length, u8);
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
const operand: V = pad ++ @as([8]u8, @bitCast(big(write_seq)));
break :nonce @as(V, pv.app_cipher.client_write_IV ++ pv.app_cipher.client_salt) ^ operand;
};
var client_verify_msg = .{@intFromEnum(tls.ContentType.handshake)} ++
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
array(u16, u8, nonce[P.fixed_iv_length..].* ++
@as([client_verify_cleartext.len + P.mac_length]u8, undefined));
P.AEAD.encrypt(
client_verify_msg[client_verify_msg.len - P.mac_length -
client_verify_cleartext.len ..][0..client_verify_cleartext.len],
client_verify_msg[client_verify_msg.len - P.mac_length ..][0..P.mac_length],
&client_verify_cleartext,
mem.toBytes(big(write_seq)) ++ client_verify_msg[0 .. 1 + 2] ++ int(u16, client_verify_cleartext.len),
nonce,
pv.app_cipher.client_write_key,
);
var all_msgs_vec: [4][]const u8 = .{
&client_key_exchange_prefix,
public_key_bytes,
&client_change_cipher_spec_msg,
&client_verify_msg,
};
try output.writeVecAll(&all_msgs_vec);
try output.flush();
},
}
write_seq += 1;
pending_cipher_state = .application;
handshake_state = .finished;
},
.certificate_verify => {
if (tls_version != .tls_1_3) return error.TlsUnexpectedMessage;
if (cipher_state != .handshake) return error.TlsUnexpectedMessage;
switch (handshake_state) {
.trust_chain_established => {},
.certificate => return error.TlsCertificateNotVerified,
else => return error.TlsUnexpectedMessage,
}
switch (handshake_cipher) {
inline else => |*p| {
try main_cert_pub_key.verifySignature(&hsd, &.{
" " ** 64 ++ "TLS 1.3, server CertificateVerify\x00",
&p.transcript_hash.peek(),
});
p.transcript_hash.update(wrapped_handshake);
},
}
handshake_state = .finished;
},
.finished => {
if (cipher_state == .cleartext) return error.TlsUnexpectedMessage;
if (handshake_state != .finished) return error.TlsUnexpectedMessage;
// This message is to trick buggy proxies into behaving correctly.
const client_change_cipher_spec_msg = .{@intFromEnum(tls.ContentType.change_cipher_spec)} ++
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
array(u16, tls.ChangeCipherSpecType, .{.change_cipher_spec});
const app_cipher = app_cipher: switch (handshake_cipher) {
inline else => |*p, tag| switch (tls_version) {
.tls_1_3 => {
const pv = &p.version.tls_1_3;
const P = @TypeOf(p.*).A;
try hsd.ensure(P.Hmac.mac_length);
const finished_digest = p.transcript_hash.peek();
p.transcript_hash.update(wrapped_handshake);
const expected_server_verify_data = tls.hmac(P.Hmac, &finished_digest, pv.server_finished_key);
if (!std.crypto.timing_safe.eql([P.Hmac.mac_length]u8, expected_server_verify_data, hsd.array(P.Hmac.mac_length).*)) return error.TlsDecryptError;
const handshake_hash = p.transcript_hash.finalResult();
const verify_data = tls.hmac(P.Hmac, &handshake_hash, pv.client_finished_key);
const out_cleartext = .{@intFromEnum(tls.HandshakeType.finished)} ++
array(u24, u8, verify_data) ++
.{@intFromEnum(tls.ContentType.handshake)};
const wrapped_len = out_cleartext.len + P.AEAD.tag_length;
var finished_msg = .{@intFromEnum(tls.ContentType.application_data)} ++
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
array(u16, u8, @as([wrapped_len]u8, undefined));
const ad = finished_msg[0..tls.record_header_len];
const ciphertext = finished_msg[tls.record_header_len..][0..out_cleartext.len];
const auth_tag = finished_msg[finished_msg.len - P.AEAD.tag_length ..];
const nonce = pv.client_handshake_iv;
P.AEAD.encrypt(ciphertext, auth_tag, &out_cleartext, ad, nonce, pv.client_handshake_key);
var all_msgs_vec: [2][]const u8 = .{
&client_change_cipher_spec_msg,
&finished_msg,
};
try output.writeVecAll(&all_msgs_vec);
try output.flush();
const client_secret = hkdfExpandLabel(P.Hkdf, pv.master_secret, "c ap traffic", &handshake_hash, P.Hash.digest_length);
const server_secret = hkdfExpandLabel(P.Hkdf, pv.master_secret, "s ap traffic", &handshake_hash, P.Hash.digest_length);
if (options.ssl_key_log) |key_log| logSecrets(key_log.writer, .{
.counter = key_seq,
.client_random = &client_hello_rand,
}, .{
.SERVER_TRAFFIC_SECRET = &server_secret,
.CLIENT_TRAFFIC_SECRET = &client_secret,
});
key_seq += 1;
break :app_cipher @unionInit(tls.ApplicationCipher, @tagName(tag), .{ .tls_1_3 = .{
.client_secret = client_secret,
.server_secret = server_secret,
.client_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length),
.server_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length),
.client_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length),
.server_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length),
} });
},
.tls_1_2 => {
const pv = &p.version.tls_1_2;
const P = @TypeOf(p.*).A;
try hsd.ensure(P.verify_data_length);
if (!std.crypto.timing_safe.eql([P.verify_data_length]u8, pv.expected_server_verify_data, hsd.array(P.verify_data_length).*)) return error.TlsDecryptError;
break :app_cipher @unionInit(tls.ApplicationCipher, @tagName(tag), .{ .tls_1_2 = pv.app_cipher });
},
else => unreachable,
},
};
if (options.ssl_key_log) |ssl_key_log| ssl_key_log.* = .{
.client_key_seq = key_seq,
.server_key_seq = key_seq,
.client_random = client_hello_rand,
.writer = ssl_key_log.writer,
};
return .{
.input = input,
.reader = .{
.buffer = options.read_buffer,
.vtable = &.{
.stream = stream,
.readVec = readVec,
},
.seek = 0,
.end = 0,
},
.output = output,
.writer = .{
.buffer = options.write_buffer,
.vtable = &.{
.drain = drain,
.flush = flush,
},
},
.tls_version = tls_version,
.read_seq = switch (tls_version) {
.tls_1_3 => 0,
.tls_1_2 => read_seq,
else => unreachable,
},
.write_seq = switch (tls_version) {
.tls_1_3 => 0,
.tls_1_2 => write_seq,
else => unreachable,
},
.received_close_notify = false,
.allow_truncation_attacks = options.allow_truncation_attacks,
.application_cipher = app_cipher,
.ssl_key_log = options.ssl_key_log,
};
},
else => return error.TlsUnexpectedMessage,
}
if (ctd.eof()) break;
cleartext_fragment_start = ctd.idx;
},
else => return error.TlsUnexpectedMessage,
}
cleartext_fragment_start = 0;
cleartext_fragment_end = 0;
}
}
fn drain(w: *Writer, data: []const []const u8, splat: usize) Writer.Error!usize {
const c: *Client = @alignCast(@fieldParentPtr("writer", w));
const output = c.output;
const ciphertext_buf = try output.writableSliceGreedy(min_buffer_len);
var ciphertext_end: usize = 0;
var total_clear: usize = 0;
done: {
{
const buf = w.buffered();
const prepared = prepareCiphertextRecord(c, ciphertext_buf[ciphertext_end..], buf, .application_data);
total_clear += prepared.cleartext_len;
ciphertext_end += prepared.ciphertext_end;
if (prepared.cleartext_len < buf.len) break :done;
}
for (data[0 .. data.len - 1]) |buf| {
if (buf.len < min_buffer_len) break :done;
const prepared = prepareCiphertextRecord(c, ciphertext_buf[ciphertext_end..], buf, .application_data);
total_clear += prepared.cleartext_len;
ciphertext_end += prepared.ciphertext_end;
if (prepared.cleartext_len < buf.len) break :done;
}
const buf = data[data.len - 1];
for (0..splat) |_| {
if (buf.len < min_buffer_len) break :done;
const prepared = prepareCiphertextRecord(c, ciphertext_buf[ciphertext_end..], buf, .application_data);
total_clear += prepared.cleartext_len;
ciphertext_end += prepared.ciphertext_end;
if (prepared.cleartext_len < buf.len) break :done;
}
}
output.advance(ciphertext_end);
return w.consume(total_clear);
}
fn flush(w: *Writer) Writer.Error!void {
const c: *Client = @alignCast(@fieldParentPtr("writer", w));
const output = c.output;
const ciphertext_buf = try output.writableSliceGreedy(min_buffer_len);
const prepared = prepareCiphertextRecord(c, ciphertext_buf, w.buffered(), .application_data);
output.advance(prepared.ciphertext_end);
w.end = 0;
}
/// Sends a `close_notify` alert, which is necessary for the server to
/// distinguish between a properly finished TLS session, or a truncation
/// attack.
pub fn end(c: *Client) Writer.Error!void {
try flush(&c.writer);
const output = c.output;
const ciphertext_buf = try output.writableSliceGreedy(min_buffer_len);
const prepared = prepareCiphertextRecord(c, ciphertext_buf, &tls.close_notify_alert, .alert);
output.advance(prepared.ciphertext_end);
}
fn prepareCiphertextRecord(
c: *Client,
ciphertext_buf: []u8,
bytes: []const u8,
inner_content_type: tls.ContentType,
) struct {
ciphertext_end: usize,
cleartext_len: usize,
} {
// Due to the trailing inner content type byte in the ciphertext, we need
// an additional buffer for storing the cleartext into before encrypting.
var cleartext_buf: [max_ciphertext_len]u8 = undefined;
var ciphertext_end: usize = 0;
var bytes_i: usize = 0;
switch (c.application_cipher) {
inline else => |*p| switch (c.tls_version) {
.tls_1_3 => {
const pv = &p.tls_1_3;
const P = @TypeOf(p.*);
const overhead_len = tls.record_header_len + P.AEAD.tag_length + 1;
while (true) {
const encrypted_content_len: u16 = @min(
bytes.len - bytes_i,
tls.max_ciphertext_inner_record_len,
ciphertext_buf.len -| (overhead_len + ciphertext_end),
);
if (encrypted_content_len == 0) return .{
.ciphertext_end = ciphertext_end,
.cleartext_len = bytes_i,
};
@memcpy(cleartext_buf[0..encrypted_content_len], bytes[bytes_i..][0..encrypted_content_len]);
cleartext_buf[encrypted_content_len] = @intFromEnum(inner_content_type);
bytes_i += encrypted_content_len;
const ciphertext_len = encrypted_content_len + 1;
const cleartext = cleartext_buf[0..ciphertext_len];
const ad = ciphertext_buf[ciphertext_end..][0..tls.record_header_len];
ad.* = .{@intFromEnum(tls.ContentType.application_data)} ++
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
int(u16, ciphertext_len + P.AEAD.tag_length);
ciphertext_end += ad.len;
const ciphertext = ciphertext_buf[ciphertext_end..][0..ciphertext_len];
ciphertext_end += ciphertext_len;
const auth_tag = ciphertext_buf[ciphertext_end..][0..P.AEAD.tag_length];
ciphertext_end += auth_tag.len;
const nonce = nonce: {
const V = @Vector(P.AEAD.nonce_length, u8);
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
const operand: V = pad ++ mem.toBytes(big(c.write_seq));
break :nonce @as(V, pv.client_iv) ^ operand;
};
P.AEAD.encrypt(ciphertext, auth_tag, cleartext, ad, nonce, pv.client_key);
c.write_seq += 1; // TODO send key_update on overflow
}
},
.tls_1_2 => {
const pv = &p.tls_1_2;
const P = @TypeOf(p.*);
const overhead_len = tls.record_header_len + P.record_iv_length + P.mac_length;
while (true) {
const message_len: u16 = @min(
bytes.len - bytes_i,
tls.max_ciphertext_inner_record_len,
ciphertext_buf.len -| (overhead_len + ciphertext_end),
);
if (message_len == 0) return .{
.ciphertext_end = ciphertext_end,
.cleartext_len = bytes_i,
};
@memcpy(cleartext_buf[0..message_len], bytes[bytes_i..][0..message_len]);
bytes_i += message_len;
const cleartext = cleartext_buf[0..message_len];
const record_header = ciphertext_buf[ciphertext_end..][0..tls.record_header_len];
ciphertext_end += tls.record_header_len;
record_header.* = .{@intFromEnum(inner_content_type)} ++
int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++
int(u16, P.record_iv_length + message_len + P.mac_length);
const ad = mem.toBytes(big(c.write_seq)) ++ record_header[0 .. 1 + 2] ++ int(u16, message_len);
const record_iv = ciphertext_buf[ciphertext_end..][0..P.record_iv_length];
ciphertext_end += P.record_iv_length;
const nonce: [P.AEAD.nonce_length]u8 = nonce: {
const V = @Vector(P.AEAD.nonce_length, u8);
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
const operand: V = pad ++ @as([8]u8, @bitCast(big(c.write_seq)));
break :nonce @as(V, pv.client_write_IV ++ pv.client_salt) ^ operand;
};
record_iv.* = nonce[P.fixed_iv_length..].*;
const ciphertext = ciphertext_buf[ciphertext_end..][0..message_len];
ciphertext_end += message_len;
const auth_tag = ciphertext_buf[ciphertext_end..][0..P.mac_length];
ciphertext_end += P.mac_length;
P.AEAD.encrypt(ciphertext, auth_tag, cleartext, ad, nonce, pv.client_write_key);
c.write_seq += 1; // TODO send key_update on overflow
}
},
else => unreachable,
},
}
}
pub fn eof(c: Client) bool {
return c.received_close_notify;
}
fn stream(r: *Reader, w: *Writer, limit: std.Io.Limit) Reader.StreamError!usize {
// This function writes exclusively to the buffer.
_ = w;
_ = limit;
const c: *Client = @alignCast(@fieldParentPtr("reader", r));
return readIndirect(c);
}
fn readVec(r: *Reader, data: [][]u8) Reader.Error!usize {
// This function writes exclusively to the buffer.
_ = data;
const c: *Client = @alignCast(@fieldParentPtr("reader", r));
return readIndirect(c);
}
fn readIndirect(c: *Client) Reader.Error!usize {
const r = &c.reader;
if (c.eof()) return error.EndOfStream;
const input = c.input;
// If at least one full encrypted record is not buffered, read once.
const record_header = input.peek(tls.record_header_len) catch |err| switch (err) {
error.EndOfStream => {
// This is either a truncation attack, a bug in the server, or an
// intentional omission of the close_notify message due to truncation
// detection handled above the TLS layer.
if (c.allow_truncation_attacks) {
c.received_close_notify = true;
return error.EndOfStream;
} else {
return failRead(c, error.TlsConnectionTruncated);
}
},
error.ReadFailed => return error.ReadFailed,
};
const ct: tls.ContentType = @enumFromInt(record_header[0]);
const legacy_version = mem.readInt(u16, record_header[1..][0..2], .big);
_ = legacy_version;
const record_len = mem.readInt(u16, record_header[3..][0..2], .big);
if (record_len > max_ciphertext_len) return failRead(c, error.TlsRecordOverflow);
const record_end = 5 + record_len;
if (record_end > input.buffered().len) {
input.fillMore() catch |err| switch (err) {
error.EndOfStream => return failRead(c, error.TlsConnectionTruncated),
error.ReadFailed => return error.ReadFailed,
};
if (record_end > input.buffered().len) return 0;
}
const cleartext_len, const inner_ct: tls.ContentType = cleartext: switch (c.application_cipher) {
inline else => |*p| switch (c.tls_version) {
.tls_1_3 => {
const pv = &p.tls_1_3;
const P = @TypeOf(p.*);
const ad = input.take(tls.record_header_len) catch unreachable; // already peeked
const ciphertext_len = record_len - P.AEAD.tag_length;
const ciphertext = input.take(ciphertext_len) catch unreachable; // already peeked
const auth_tag = (input.takeArray(P.AEAD.tag_length) catch unreachable).*; // already peeked
const nonce = nonce: {
const V = @Vector(P.AEAD.nonce_length, u8);
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
const operand: V = pad ++ mem.toBytes(big(c.read_seq));
break :nonce @as(V, pv.server_iv) ^ operand;
};
rebase(r, ciphertext.len);
const cleartext = r.buffer[r.end..][0..ciphertext.len];
P.AEAD.decrypt(cleartext, ciphertext, auth_tag, ad, nonce, pv.server_key) catch
return failRead(c, error.TlsBadRecordMac);
// TODO use scalar, non-slice version
const msg = mem.trimRight(u8, cleartext, "\x00");
break :cleartext .{ msg.len - 1, @enumFromInt(msg[msg.len - 1]) };
},
.tls_1_2 => {
const pv = &p.tls_1_2;
const P = @TypeOf(p.*);
const message_len: u16 = record_len - P.record_iv_length - P.mac_length;
const ad_header = input.take(tls.record_header_len) catch unreachable; // already peeked
const ad = mem.toBytes(big(c.read_seq)) ++
ad_header[0 .. 1 + 2] ++
mem.toBytes(big(message_len));
const record_iv = (input.takeArray(P.record_iv_length) catch unreachable).*; // already peeked
const masked_read_seq = c.read_seq &
comptime std.math.shl(u64, std.math.maxInt(u64), 8 * P.record_iv_length);
const nonce: [P.AEAD.nonce_length]u8 = nonce: {
const V = @Vector(P.AEAD.nonce_length, u8);
const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8);
const operand: V = pad ++ @as([8]u8, @bitCast(big(masked_read_seq)));
break :nonce @as(V, pv.server_write_IV ++ record_iv) ^ operand;
};
const ciphertext = input.take(message_len) catch unreachable; // already peeked
const auth_tag = (input.takeArray(P.mac_length) catch unreachable).*; // already peeked
rebase(r, ciphertext.len);
const cleartext = r.buffer[r.end..][0..ciphertext.len];
P.AEAD.decrypt(cleartext, ciphertext, auth_tag, ad, nonce, pv.server_write_key) catch
return failRead(c, error.TlsBadRecordMac);
break :cleartext .{ cleartext.len, ct };
},
else => unreachable,
},
};
const cleartext = r.buffer[r.end..][0..cleartext_len];
c.read_seq = std.math.add(u64, c.read_seq, 1) catch return failRead(c, error.TlsSequenceOverflow);
switch (inner_ct) {
.alert => {
if (cleartext.len != 2) return failRead(c, error.TlsDecodeError);
const alert: tls.Alert = .{
.level = @enumFromInt(cleartext[0]),
.description = @enumFromInt(cleartext[1]),
};
switch (alert.description) {
.close_notify => {
c.received_close_notify = true;
return 0;
},
.user_canceled => {
// TODO: handle server-side closures
return failRead(c, error.TlsUnexpectedMessage);
},
else => {
c.alert = alert;
return failRead(c, error.TlsAlert);
},
}
},
.handshake => {
var ct_i: usize = 0;
while (true) {
const handshake_type: tls.HandshakeType = @enumFromInt(cleartext[ct_i]);
ct_i += 1;
const handshake_len = mem.readInt(u24, cleartext[ct_i..][0..3], .big);
ct_i += 3;
const next_handshake_i = ct_i + handshake_len;
if (next_handshake_i > cleartext.len) return failRead(c, error.TlsBadLength);
const handshake = cleartext[ct_i..next_handshake_i];
switch (handshake_type) {
.new_session_ticket => {
// This client implementation ignores new session tickets.
},
.key_update => {
switch (c.application_cipher) {
inline else => |*p| {
const pv = &p.tls_1_3;
const P = @TypeOf(p.*);
const server_secret = hkdfExpandLabel(P.Hkdf, pv.server_secret, "traffic upd", "", P.Hash.digest_length);
if (c.ssl_key_log) |key_log| logSecrets(key_log.writer, .{
.counter = key_log.serverCounter(),
.client_random = &key_log.client_random,
}, .{
.SERVER_TRAFFIC_SECRET = &server_secret,
});
pv.server_secret = server_secret;
pv.server_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length);
pv.server_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length);
},
}
c.read_seq = 0;
switch (@as(tls.KeyUpdateRequest, @enumFromInt(handshake[0]))) {
.update_requested => {
switch (c.application_cipher) {
inline else => |*p| {
const pv = &p.tls_1_3;
const P = @TypeOf(p.*);
const client_secret = hkdfExpandLabel(P.Hkdf, pv.client_secret, "traffic upd", "", P.Hash.digest_length);
if (c.ssl_key_log) |key_log| logSecrets(key_log.writer, .{
.counter = key_log.clientCounter(),
.client_random = &key_log.client_random,
}, .{
.CLIENT_TRAFFIC_SECRET = &client_secret,
});
pv.client_secret = client_secret;
pv.client_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length);
pv.client_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length);
},
}
c.write_seq = 0;
},
.update_not_requested => {},
_ => return failRead(c, error.TlsIllegalParameter),
}
},
else => return failRead(c, error.TlsUnexpectedMessage),
}
ct_i = next_handshake_i;
if (ct_i >= cleartext.len) break;
}
return 0;
},
.application_data => {
r.end += cleartext.len;
return 0;
},
else => return failRead(c, error.TlsUnexpectedMessage),
}
}
fn rebase(r: *Reader, capacity: usize) void {
if (r.buffer.len - r.end >= capacity) return;
const data = r.buffer[r.seek..r.end];
@memmove(r.buffer[0..data.len], data);
r.seek = 0;
r.end = data.len;
assert(r.buffer.len - r.end >= capacity);
}
fn failRead(c: *Client, err: ReadError) error{ReadFailed} {
c.read_err = err;
return error.ReadFailed;
}
fn logSecrets(w: *Writer, context: anytype, secrets: anytype) void {
inline for (@typeInfo(@TypeOf(secrets)).@"struct".fields) |field| w.print("{s}" ++
(if (@hasField(@TypeOf(context), "counter")) "_{d}" else "") ++ " {x} {x}\n", .{field.name} ++
(if (@hasField(@TypeOf(context), "counter")) .{context.counter} else .{}) ++ .{
context.client_random,
@field(secrets, field.name),
}) catch {};
}
fn big(x: anytype) @TypeOf(x) {
return switch (native_endian) {
.big => x,
.little => @byteSwap(x),
};
}
const KeyShare = struct {
ml_kem768_kp: crypto.kem.ml_kem.MLKem768.KeyPair,
secp256r1_kp: crypto.sign.ecdsa.EcdsaP256Sha256.KeyPair,
secp384r1_kp: crypto.sign.ecdsa.EcdsaP384Sha384.KeyPair,
x25519_kp: crypto.dh.X25519.KeyPair,
sk_buf: [sk_max_len]u8,
sk_len: std.math.IntFittingRange(0, sk_max_len),
const sk_max_len = @max(
crypto.dh.X25519.shared_length + crypto.kem.ml_kem.MLKem768.shared_length,
crypto.ecc.P256.scalar.encoded_length,
crypto.ecc.P384.scalar.encoded_length,
crypto.dh.X25519.shared_length,
);
fn init(seed: [112]u8) error{IdentityElement}!KeyShare {
return .{
.ml_kem768_kp = .generate(),
.secp256r1_kp = try .generateDeterministic(seed[0..32].*),
.secp384r1_kp = try .generateDeterministic(seed[32..80].*),
.x25519_kp = try .generateDeterministic(seed[80..112].*),
.sk_buf = undefined,
.sk_len = 0,
};
}
fn exchange(
ks: *KeyShare,
named_group: tls.NamedGroup,
server_pub_key: []const u8,
) error{ TlsIllegalParameter, TlsDecryptFailure }!void {
switch (named_group) {
.x25519_ml_kem768 => {
const hksl = crypto.kem.ml_kem.MLKem768.ciphertext_length;
const xksl = hksl + crypto.dh.X25519.public_length;
if (server_pub_key.len != xksl) return error.TlsIllegalParameter;
const hsk = ks.ml_kem768_kp.secret_key.decaps(server_pub_key[0..hksl]) catch
return error.TlsDecryptFailure;
const xsk = crypto.dh.X25519.scalarmult(ks.x25519_kp.secret_key, server_pub_key[hksl..xksl].*) catch
return error.TlsDecryptFailure;
@memcpy(ks.sk_buf[0..hsk.len], &hsk);
@memcpy(ks.sk_buf[hsk.len..][0..xsk.len], &xsk);
ks.sk_len = hsk.len + xsk.len;
},
.secp256r1 => {
const PublicKey = crypto.sign.ecdsa.EcdsaP256Sha256.PublicKey;
const pk = PublicKey.fromSec1(server_pub_key) catch return error.TlsDecryptFailure;
const mul = pk.p.mulPublic(ks.secp256r1_kp.secret_key.bytes, .big) catch
return error.TlsDecryptFailure;
const sk = mul.affineCoordinates().x.toBytes(.big);
@memcpy(ks.sk_buf[0..sk.len], &sk);
ks.sk_len = sk.len;
},
.secp384r1 => {
const PublicKey = crypto.sign.ecdsa.EcdsaP384Sha384.PublicKey;
const pk = PublicKey.fromSec1(server_pub_key) catch return error.TlsDecryptFailure;
const mul = pk.p.mulPublic(ks.secp384r1_kp.secret_key.bytes, .big) catch
return error.TlsDecryptFailure;
const sk = mul.affineCoordinates().x.toBytes(.big);
@memcpy(ks.sk_buf[0..sk.len], &sk);
ks.sk_len = sk.len;
},
.x25519 => {
const ksl = crypto.dh.X25519.public_length;
if (server_pub_key.len != ksl) return error.TlsIllegalParameter;
const sk = crypto.dh.X25519.scalarmult(ks.x25519_kp.secret_key, server_pub_key[0..ksl].*) catch
return error.TlsDecryptFailure;
@memcpy(ks.sk_buf[0..sk.len], &sk);
ks.sk_len = sk.len;
},
else => return error.TlsIllegalParameter,
}
}
fn getSharedSecret(ks: *const KeyShare) ?[]const u8 {
return if (ks.sk_len > 0) ks.sk_buf[0..ks.sk_len] else null;
}
};
fn SchemeEcdsa(comptime scheme: tls.SignatureScheme) type {
return switch (scheme) {
.ecdsa_secp256r1_sha256 => crypto.sign.ecdsa.EcdsaP256Sha256,
.ecdsa_secp384r1_sha384 => crypto.sign.ecdsa.EcdsaP384Sha384,
else => @compileError("bad scheme"),
};
}
fn SchemeRsa(comptime scheme: tls.SignatureScheme) type {
return switch (scheme) {
.rsa_pkcs1_sha256,
.rsa_pkcs1_sha384,
.rsa_pkcs1_sha512,
.rsa_pkcs1_sha1,
=> Certificate.rsa.PKCS1v1_5Signature,
.rsa_pss_rsae_sha256,
.rsa_pss_rsae_sha384,
.rsa_pss_rsae_sha512,
.rsa_pss_pss_sha256,
.rsa_pss_pss_sha384,
.rsa_pss_pss_sha512,
=> Certificate.rsa.PSSSignature,
else => @compileError("bad scheme"),
};
}
fn SchemeEddsa(comptime scheme: tls.SignatureScheme) type {
return switch (scheme) {
.ed25519 => crypto.sign.Ed25519,
else => @compileError("bad scheme"),
};
}
fn SchemeHash(comptime scheme: tls.SignatureScheme) type {
return switch (scheme) {
.rsa_pkcs1_sha256,
.ecdsa_secp256r1_sha256,
.rsa_pss_rsae_sha256,
.rsa_pss_pss_sha256,
=> crypto.hash.sha2.Sha256,
.rsa_pkcs1_sha384,
.ecdsa_secp384r1_sha384,
.rsa_pss_rsae_sha384,
.rsa_pss_pss_sha384,
=> crypto.hash.sha2.Sha384,
.rsa_pkcs1_sha512,
.ecdsa_secp521r1_sha512,
.rsa_pss_rsae_sha512,
.rsa_pss_pss_sha512,
=> crypto.hash.sha2.Sha512,
.rsa_pkcs1_sha1,
.ecdsa_sha1,
=> crypto.hash.Sha1,
else => @compileError("bad scheme"),
};
}
const CertificatePublicKey = struct {
algo: Certificate.AlgorithmCategory,
buf: [600]u8,
len: u16,
fn init(
cert_pub_key: *CertificatePublicKey,
algo: Certificate.AlgorithmCategory,
pub_key: []const u8,
) error{CertificatePublicKeyInvalid}!void {
if (pub_key.len > cert_pub_key.buf.len) return error.CertificatePublicKeyInvalid;
cert_pub_key.algo = algo;
@memcpy(cert_pub_key.buf[0..pub_key.len], pub_key);
cert_pub_key.len = @intCast(pub_key.len);
}
const VerifyError = error{ TlsDecodeError, TlsBadSignatureScheme, InvalidEncoding } ||
// ecdsa
crypto.errors.EncodingError ||
crypto.errors.NotSquareError ||
crypto.errors.NonCanonicalError ||
SchemeEcdsa(.ecdsa_secp256r1_sha256).Signature.VerifyError ||
SchemeEcdsa(.ecdsa_secp384r1_sha384).Signature.VerifyError ||
// rsa
error{TlsBadRsaSignatureBitCount} ||
Certificate.rsa.PublicKey.ParseDerError ||
Certificate.rsa.PublicKey.FromBytesError ||
Certificate.rsa.PSSSignature.VerifyError ||
Certificate.rsa.PKCS1v1_5Signature.VerifyError ||
// eddsa
SchemeEddsa(.ed25519).Signature.VerifyError;
fn verifySignature(
cert_pub_key: *const CertificatePublicKey,
sigd: *tls.Decoder,
msg: []const []const u8,
) VerifyError!void {
const pub_key = cert_pub_key.buf[0..cert_pub_key.len];
try sigd.ensure(2 + 2);
const scheme = sigd.decode(tls.SignatureScheme);
const sig_len = sigd.decode(u16);
try sigd.ensure(sig_len);
const encoded_sig = sigd.slice(sig_len);
if (cert_pub_key.algo != @as(Certificate.AlgorithmCategory, switch (scheme) {
.ecdsa_secp256r1_sha256,
.ecdsa_secp384r1_sha384,
=> .X9_62_id_ecPublicKey,
.rsa_pkcs1_sha256,
.rsa_pkcs1_sha384,
.rsa_pkcs1_sha512,
.rsa_pss_rsae_sha256,
.rsa_pss_rsae_sha384,
.rsa_pss_rsae_sha512,
.rsa_pkcs1_sha1,
=> .rsaEncryption,
.rsa_pss_pss_sha256,
.rsa_pss_pss_sha384,
.rsa_pss_pss_sha512,
=> .rsassa_pss,
else => return error.TlsBadSignatureScheme,
})) return error.TlsBadSignatureScheme;
switch (scheme) {
inline .ecdsa_secp256r1_sha256,
.ecdsa_secp384r1_sha384,
=> |comptime_scheme| {
const Ecdsa = SchemeEcdsa(comptime_scheme);
const sig = try Ecdsa.Signature.fromDer(encoded_sig);
const key = try Ecdsa.PublicKey.fromSec1(pub_key);
var ver = try sig.verifier(key);
for (msg) |part| ver.update(part);
try ver.verify();
},
inline .rsa_pkcs1_sha256,
.rsa_pkcs1_sha384,
.rsa_pkcs1_sha512,
.rsa_pss_rsae_sha256,
.rsa_pss_rsae_sha384,
.rsa_pss_rsae_sha512,
.rsa_pss_pss_sha256,
.rsa_pss_pss_sha384,
.rsa_pss_pss_sha512,
.rsa_pkcs1_sha1,
=> |comptime_scheme| {
const RsaSignature = SchemeRsa(comptime_scheme);
const Hash = SchemeHash(comptime_scheme);
const PublicKey = Certificate.rsa.PublicKey;
const components = try PublicKey.parseDer(pub_key);
const exponent = components.exponent;
const modulus = components.modulus;
switch (modulus.len) {
inline 128, 256, 384, 512 => |modulus_len| {
const key: PublicKey = try .fromBytes(exponent, modulus);
const sig = RsaSignature.fromBytes(modulus_len, encoded_sig);
try RsaSignature.concatVerify(modulus_len, sig, msg, key, Hash);
},
else => return error.TlsBadRsaSignatureBitCount,
}
},
inline .ed25519 => |comptime_scheme| {
const Eddsa = SchemeEddsa(comptime_scheme);
if (encoded_sig.len != Eddsa.Signature.encoded_length) return error.InvalidEncoding;
const sig = Eddsa.Signature.fromBytes(encoded_sig[0..Eddsa.Signature.encoded_length].*);
if (pub_key.len != Eddsa.PublicKey.encoded_length) return error.InvalidEncoding;
const key = try Eddsa.PublicKey.fromBytes(pub_key[0..Eddsa.PublicKey.encoded_length].*);
var ver = try sig.verifier(key);
for (msg) |part| ver.update(part);
try ver.verify();
},
else => unreachable,
}
}
};
/// The priority order here is chosen based on what crypto algorithms Zig has
/// available in the standard library as well as what is faster. Following are
/// a few data points on the relative performance of these algorithms.
///
/// Measurement taken with 0.11.0-dev.810+c2f5848fe
/// on x86_64-linux Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz:
/// zig run .lib/std/crypto/benchmark.zig -OReleaseFast
/// aegis-128l: 15382 MiB/s
/// aegis-256: 9553 MiB/s
/// aes128-gcm: 3721 MiB/s
/// aes256-gcm: 3010 MiB/s
/// chacha20Poly1305: 597 MiB/s
///
/// Measurement taken with 0.11.0-dev.810+c2f5848fe
/// on x86_64-linux Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz:
/// zig run .lib/std/crypto/benchmark.zig -OReleaseFast -mcpu=baseline
/// aegis-128l: 629 MiB/s
/// chacha20Poly1305: 529 MiB/s
/// aegis-256: 461 MiB/s
/// aes128-gcm: 138 MiB/s
/// aes256-gcm: 120 MiB/s
const cipher_suites = if (crypto.core.aes.has_hardware_support)
array(u16, tls.CipherSuite, .{
.AEGIS_128L_SHA256,
.AEGIS_256_SHA512,
.AES_128_GCM_SHA256,
.ECDHE_RSA_WITH_AES_128_GCM_SHA256,
.AES_256_GCM_SHA384,
.ECDHE_RSA_WITH_AES_256_GCM_SHA384,
.CHACHA20_POLY1305_SHA256,
.ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
})
else
array(u16, tls.CipherSuite, .{
.CHACHA20_POLY1305_SHA256,
.ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
.AEGIS_128L_SHA256,
.AEGIS_256_SHA512,
.AES_128_GCM_SHA256,
.ECDHE_RSA_WITH_AES_128_GCM_SHA256,
.AES_256_GCM_SHA384,
.ECDHE_RSA_WITH_AES_256_GCM_SHA384,
});