Function init [src]

Initiates a TLS handshake and establishes a TLSv1.2 or TLSv1.3 session with stream, which must conform to StreamInterface. host is only borrowed during this function call.

Prototype

pub fn init(stream: anytype, options: Options) InitError(@TypeOf(stream))!Client

Parameters

options: Options

Source

pub fn init(stream: anytype, options: Options) InitError(@TypeOf(stream))!Client { const host = switch (options.host) { .no_verification => "", .explicit => |host| host, }; const host_len: u16 = @intCast(host.len); var random_buffer: [176]u8 = undefined; crypto.random.bytes(&random_buffer); const client_hello_rand = random_buffer[0..32].*; var key_seq: u64 = 0; var server_hello_rand: [32]u8 = undefined; const legacy_session_id = random_buffer[32..64].*; var key_share = KeyShare.init(random_buffer[64..176].*) catch |err| switch (err) { // Only possible to happen if the seed is all zeroes. error.IdentityElement => return error.InsufficientEntropy, }; const extensions_payload = tls.extension(.supported_versions, array(u8, tls.ProtocolVersion, .{ .tls_1_3, .tls_1_2, })) ++ tls.extension(.signature_algorithms, array(u16, tls.SignatureScheme, .{ .ecdsa_secp256r1_sha256, .ecdsa_secp384r1_sha384, .rsa_pkcs1_sha256, .rsa_pkcs1_sha384, .rsa_pkcs1_sha512, .rsa_pss_rsae_sha256, .rsa_pss_rsae_sha384, .rsa_pss_rsae_sha512, .rsa_pss_pss_sha256, .rsa_pss_pss_sha384, .rsa_pss_pss_sha512, .rsa_pkcs1_sha1, .ed25519, })) ++ tls.extension(.supported_groups, array(u16, tls.NamedGroup, .{ .x25519_ml_kem768, .secp256r1, .secp384r1, .x25519, })) ++ tls.extension(.psk_key_exchange_modes, array(u8, tls.PskKeyExchangeMode, .{ .psk_dhe_ke, })) ++ tls.extension(.key_share, array( u16, u8, int(u16, @intFromEnum(tls.NamedGroup.x25519_ml_kem768)) ++ array(u16, u8, key_share.ml_kem768_kp.public_key.toBytes() ++ key_share.x25519_kp.public_key) ++ int(u16, @intFromEnum(tls.NamedGroup.secp256r1)) ++ array(u16, u8, key_share.secp256r1_kp.public_key.toUncompressedSec1()) ++ int(u16, @intFromEnum(tls.NamedGroup.secp384r1)) ++ array(u16, u8, key_share.secp384r1_kp.public_key.toUncompressedSec1()) ++ int(u16, @intFromEnum(tls.NamedGroup.x25519)) ++ array(u16, u8, key_share.x25519_kp.public_key), )); const server_name_extension = int(u16, @intFromEnum(tls.ExtensionType.server_name)) ++ int(u16, 2 + 1 + 2 + host_len) ++ // byte length of this extension payload int(u16, 1 + 2 + host_len) ++ // server_name_list byte count .{0x00} ++ // name_type int(u16, host_len); const server_name_extension_len = switch (options.host) { .no_verification => 0, .explicit => server_name_extension.len + host_len, }; const extensions_header = int(u16, @intCast(extensions_payload.len + server_name_extension_len)) ++ extensions_payload ++ server_name_extension; const client_hello = int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++ client_hello_rand ++ [1]u8{32} ++ legacy_session_id ++ cipher_suites ++ array(u8, tls.CompressionMethod, .{.null}) ++ extensions_header; const out_handshake = .{@intFromEnum(tls.HandshakeType.client_hello)} ++ int(u24, @intCast(client_hello.len - server_name_extension.len + server_name_extension_len)) ++ client_hello; const cleartext_header_buf = .{@intFromEnum(tls.ContentType.handshake)} ++ int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_0)) ++ int(u16, @intCast(out_handshake.len - server_name_extension.len + server_name_extension_len)) ++ out_handshake; const cleartext_header = switch (options.host) { .no_verification => cleartext_header_buf[0 .. cleartext_header_buf.len - server_name_extension.len], .explicit => &cleartext_header_buf, }; { var iovecs = [_]std.posix.iovec_const{ .{ .base = cleartext_header.ptr, .len = cleartext_header.len }, .{ .base = host.ptr, .len = host.len }, }; try stream.writevAll(iovecs[0..if (host.len == 0) 1 else 2]); } var tls_version: tls.ProtocolVersion = undefined; // These are used for two purposes: // * Detect whether a certificate is the first one presented, in which case // we need to verify the host name. var cert_index: usize = 0; // * Flip back and forth between the two cleartext buffers in order to keep // the previous certificate in memory so that it can be verified by the // next one. var cert_buf_index: usize = 0; var write_seq: u64 = 0; var read_seq: u64 = 0; var prev_cert: Certificate.Parsed = undefined; const CipherState = enum { /// No cipher is in use cleartext, /// Handshake cipher is in use handshake, /// Application cipher is in use application, }; var pending_cipher_state: CipherState = .cleartext; var cipher_state = pending_cipher_state; const HandshakeState = enum { /// In this state we expect only a server hello message. hello, /// In this state we expect only an encrypted_extensions message. encrypted_extensions, /// In this state we expect certificate handshake messages. certificate, /// In this state we expect certificate or certificate_verify messages. /// certificate messages are ignored since the trust chain is already /// established. trust_chain_established, /// In this state, we expect only the server_hello_done handshake message. server_hello_done, /// In this state, we expect only the finished handshake message. finished, }; var handshake_state: HandshakeState = .hello; var handshake_cipher: tls.HandshakeCipher = undefined; var main_cert_pub_key: CertificatePublicKey = undefined; const now_sec = std.time.timestamp(); var cleartext_fragment_start: usize = 0; var cleartext_fragment_end: usize = 0; var cleartext_bufs: [2][tls.max_ciphertext_inner_record_len]u8 = undefined; var handshake_buffer: [tls.max_ciphertext_record_len]u8 = undefined; var d: tls.Decoder = .{ .buf = &handshake_buffer }; fragment: while (true) { try d.readAtLeastOurAmt(stream, tls.record_header_len); const record_header = d.buf[d.idx..][0..tls.record_header_len]; const record_ct = d.decode(tls.ContentType); d.skip(2); // legacy_version const record_len = d.decode(u16); try d.readAtLeast(stream, record_len); var record_decoder = try d.sub(record_len); var ctd, const ct = content: switch (cipher_state) { .cleartext => .{ record_decoder, record_ct }, .handshake => { std.debug.assert(tls_version == .tls_1_3); if (record_ct != .application_data) return error.TlsUnexpectedMessage; try record_decoder.ensure(record_len); const cleartext_buf = &cleartext_bufs[cert_buf_index % 2]; switch (handshake_cipher) { inline else => |*p| { const pv = &p.version.tls_1_3; const P = @TypeOf(p.*).A; if (record_len < P.AEAD.tag_length) return error.TlsRecordOverflow; const ciphertext = record_decoder.slice(record_len - P.AEAD.tag_length); const cleartext_fragment_buf = cleartext_buf[cleartext_fragment_end..]; if (ciphertext.len > cleartext_fragment_buf.len) return error.TlsRecordOverflow; const cleartext = cleartext_fragment_buf[0..ciphertext.len]; const auth_tag = record_decoder.array(P.AEAD.tag_length).*; const nonce = nonce: { const V = @Vector(P.AEAD.nonce_length, u8); const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8); const operand: V = pad ++ @as([8]u8, @bitCast(big(read_seq))); break :nonce @as(V, pv.server_handshake_iv) ^ operand; }; P.AEAD.decrypt(cleartext, ciphertext, auth_tag, record_header, nonce, pv.server_handshake_key) catch return error.TlsBadRecordMac; cleartext_fragment_end += std.mem.trimRight(u8, cleartext, "\x00").len; }, } read_seq += 1; cleartext_fragment_end -= 1; const ct: tls.ContentType = @enumFromInt(cleartext_buf[cleartext_fragment_end]); if (ct != .handshake) return error.TlsUnexpectedMessage; break :content .{ tls.Decoder.fromTheirSlice(@constCast(cleartext_buf[cleartext_fragment_start..cleartext_fragment_end])), ct }; }, .application => { std.debug.assert(tls_version == .tls_1_2); if (record_ct != .handshake) return error.TlsUnexpectedMessage; try record_decoder.ensure(record_len); const cleartext_buf = &cleartext_bufs[cert_buf_index % 2]; switch (handshake_cipher) { inline else => |*p| { const pv = &p.version.tls_1_2; const P = @TypeOf(p.*).A; if (record_len < P.record_iv_length + P.mac_length) return error.TlsRecordOverflow; const message_len: u16 = record_len - P.record_iv_length - P.mac_length; const cleartext_fragment_buf = cleartext_buf[cleartext_fragment_end..]; if (message_len > cleartext_fragment_buf.len) return error.TlsRecordOverflow; const cleartext = cleartext_fragment_buf[0..message_len]; const ad = std.mem.toBytes(big(read_seq)) ++ record_header[0 .. 1 + 2] ++ std.mem.toBytes(big(message_len)); const record_iv = record_decoder.array(P.record_iv_length).*; const masked_read_seq = read_seq & comptime std.math.shl(u64, std.math.maxInt(u64), 8 * P.record_iv_length); const nonce: [P.AEAD.nonce_length]u8 = nonce: { const V = @Vector(P.AEAD.nonce_length, u8); const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8); const operand: V = pad ++ @as([8]u8, @bitCast(big(masked_read_seq))); break :nonce @as(V, pv.app_cipher.server_write_IV ++ record_iv) ^ operand; }; const ciphertext = record_decoder.slice(message_len); const auth_tag = record_decoder.array(P.mac_length); P.AEAD.decrypt(cleartext, ciphertext, auth_tag.*, ad, nonce, pv.app_cipher.server_write_key) catch return error.TlsBadRecordMac; cleartext_fragment_end += message_len; }, } read_seq += 1; break :content .{ tls.Decoder.fromTheirSlice(cleartext_buf[cleartext_fragment_start..cleartext_fragment_end]), record_ct }; }, }; switch (ct) { .alert => { ctd.ensure(2) catch continue :fragment; const level = ctd.decode(tls.AlertLevel); const desc = ctd.decode(tls.AlertDescription); _ = level; // if this isn't a error alert, then it's a closure alert, which makes no sense in a handshake try desc.toError(); // TODO: handle server-side closures return error.TlsUnexpectedMessage; }, .change_cipher_spec => { ctd.ensure(1) catch continue :fragment; if (ctd.decode(tls.ChangeCipherSpecType) != .change_cipher_spec) return error.TlsIllegalParameter; cipher_state = pending_cipher_state; }, .handshake => while (true) { ctd.ensure(4) catch continue :fragment; const handshake_type = ctd.decode(tls.HandshakeType); const handshake_len = ctd.decode(u24); var hsd = ctd.sub(handshake_len) catch continue :fragment; const wrapped_handshake = ctd.buf[ctd.idx - handshake_len - 4 .. ctd.idx]; switch (handshake_type) { .server_hello => { if (cipher_state != .cleartext) return error.TlsUnexpectedMessage; if (handshake_state != .hello) return error.TlsUnexpectedMessage; try hsd.ensure(2 + 32 + 1); const legacy_version = hsd.decode(u16); @memcpy(&server_hello_rand, hsd.array(32)); if (mem.eql(u8, &server_hello_rand, &tls.hello_retry_request_sequence)) { // This is a HelloRetryRequest message. This client implementation // does not expect to get one. return error.TlsUnexpectedMessage; } const legacy_session_id_echo_len = hsd.decode(u8); try hsd.ensure(legacy_session_id_echo_len + 2 + 1); const legacy_session_id_echo = hsd.slice(legacy_session_id_echo_len); const cipher_suite_tag = hsd.decode(tls.CipherSuite); hsd.skip(1); // legacy_compression_method var supported_version: ?u16 = null; if (!hsd.eof()) { try hsd.ensure(2); const extensions_size = hsd.decode(u16); var all_extd = try hsd.sub(extensions_size); while (!all_extd.eof()) { try all_extd.ensure(2 + 2); const et = all_extd.decode(tls.ExtensionType); const ext_size = all_extd.decode(u16); var extd = try all_extd.sub(ext_size); switch (et) { .supported_versions => { if (supported_version) |_| return error.TlsIllegalParameter; try extd.ensure(2); supported_version = extd.decode(u16); }, .key_share => { if (key_share.getSharedSecret()) |_| return error.TlsIllegalParameter; try extd.ensure(4); const named_group = extd.decode(tls.NamedGroup); const key_size = extd.decode(u16); try extd.ensure(key_size); try key_share.exchange(named_group, extd.slice(key_size)); }, else => {}, } } } tls_version = @enumFromInt(supported_version orelse legacy_version); switch (tls_version) { .tls_1_3 => if (!mem.eql(u8, legacy_session_id_echo, &legacy_session_id)) return error.TlsIllegalParameter, .tls_1_2 => if (mem.eql(u8, server_hello_rand[24..31], "DOWNGRD") and server_hello_rand[31] >> 1 == 0x00) return error.TlsIllegalParameter, else => return error.TlsIllegalParameter, } switch (cipher_suite_tag) { inline .AES_128_GCM_SHA256, .AES_256_GCM_SHA384, .CHACHA20_POLY1305_SHA256, .AEGIS_256_SHA512, .AEGIS_128L_SHA256, .ECDHE_RSA_WITH_AES_128_GCM_SHA256, .ECDHE_RSA_WITH_AES_256_GCM_SHA384, .ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, => |tag| { handshake_cipher = @unionInit(tls.HandshakeCipher, @tagName(tag.with()), .{ .transcript_hash = .init(.{}), .version = undefined, }); const p = &@field(handshake_cipher, @tagName(tag.with())); p.transcript_hash.update(cleartext_header[tls.record_header_len..]); // Client Hello part 1 p.transcript_hash.update(host); // Client Hello part 2 p.transcript_hash.update(wrapped_handshake); }, else => return error.TlsIllegalParameter, } switch (tls_version) { .tls_1_3 => { switch (cipher_suite_tag) { inline .AES_128_GCM_SHA256, .AES_256_GCM_SHA384, .CHACHA20_POLY1305_SHA256, .AEGIS_256_SHA512, .AEGIS_128L_SHA256, => |tag| { const sk = key_share.getSharedSecret() orelse return error.TlsIllegalParameter; const p = &@field(handshake_cipher, @tagName(tag.with())); const P = @TypeOf(p.*).A; const hello_hash = p.transcript_hash.peek(); const zeroes = [1]u8{0} ** P.Hash.digest_length; const early_secret = P.Hkdf.extract(&[1]u8{0}, &zeroes); const empty_hash = tls.emptyHash(P.Hash); p.version = .{ .tls_1_3 = undefined }; const pv = &p.version.tls_1_3; const hs_derived_secret = hkdfExpandLabel(P.Hkdf, early_secret, "derived", &empty_hash, P.Hash.digest_length); pv.handshake_secret = P.Hkdf.extract(&hs_derived_secret, sk); const ap_derived_secret = hkdfExpandLabel(P.Hkdf, pv.handshake_secret, "derived", &empty_hash, P.Hash.digest_length); pv.master_secret = P.Hkdf.extract(&ap_derived_secret, &zeroes); const client_secret = hkdfExpandLabel(P.Hkdf, pv.handshake_secret, "c hs traffic", &hello_hash, P.Hash.digest_length); const server_secret = hkdfExpandLabel(P.Hkdf, pv.handshake_secret, "s hs traffic", &hello_hash, P.Hash.digest_length); if (options.ssl_key_log_file) |key_log_file| logSecrets(key_log_file, .{ .client_random = &client_hello_rand, }, .{ .SERVER_HANDSHAKE_TRAFFIC_SECRET = &server_secret, .CLIENT_HANDSHAKE_TRAFFIC_SECRET = &client_secret, }); pv.client_finished_key = hkdfExpandLabel(P.Hkdf, client_secret, "finished", "", P.Hmac.key_length); pv.server_finished_key = hkdfExpandLabel(P.Hkdf, server_secret, "finished", "", P.Hmac.key_length); pv.client_handshake_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length); pv.server_handshake_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length); pv.client_handshake_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length); pv.server_handshake_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length); }, else => return error.TlsIllegalParameter, } pending_cipher_state = .handshake; handshake_state = .encrypted_extensions; }, .tls_1_2 => switch (cipher_suite_tag) { .ECDHE_RSA_WITH_AES_128_GCM_SHA256, .ECDHE_RSA_WITH_AES_256_GCM_SHA384, .ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, => handshake_state = .certificate, else => return error.TlsIllegalParameter, }, else => return error.TlsIllegalParameter, } }, .encrypted_extensions => { if (tls_version != .tls_1_3) return error.TlsUnexpectedMessage; if (cipher_state != .handshake) return error.TlsUnexpectedMessage; if (handshake_state != .encrypted_extensions) return error.TlsUnexpectedMessage; switch (handshake_cipher) { inline else => |*p| p.transcript_hash.update(wrapped_handshake), } try hsd.ensure(2); const total_ext_size = hsd.decode(u16); var all_extd = try hsd.sub(total_ext_size); while (!all_extd.eof()) { try all_extd.ensure(4); const et = all_extd.decode(tls.ExtensionType); const ext_size = all_extd.decode(u16); const extd = try all_extd.sub(ext_size); _ = extd; switch (et) { .server_name => {}, else => {}, } } handshake_state = .certificate; }, .certificate => cert: { if (cipher_state == .application) return error.TlsUnexpectedMessage; switch (handshake_state) { .certificate => {}, .trust_chain_established => break :cert, else => return error.TlsUnexpectedMessage, } switch (handshake_cipher) { inline else => |*p| p.transcript_hash.update(wrapped_handshake), } switch (tls_version) { .tls_1_3 => { try hsd.ensure(1 + 3); const cert_req_ctx_len = hsd.decode(u8); if (cert_req_ctx_len != 0) return error.TlsIllegalParameter; }, .tls_1_2 => try hsd.ensure(3), else => unreachable, } const certs_size = hsd.decode(u24); var certs_decoder = try hsd.sub(certs_size); while (!certs_decoder.eof()) { try certs_decoder.ensure(3); const cert_size = certs_decoder.decode(u24); const certd = try certs_decoder.sub(cert_size); if (tls_version == .tls_1_3) { try certs_decoder.ensure(2); const total_ext_size = certs_decoder.decode(u16); const all_extd = try certs_decoder.sub(total_ext_size); _ = all_extd; } const subject_cert: Certificate = .{ .buffer = certd.buf, .index = @intCast(certd.idx), }; const subject = try subject_cert.parse(); if (cert_index == 0) { // Verify the host on the first certificate. switch (options.host) { .no_verification => {}, .explicit => try subject.verifyHostName(host), } // Keep track of the public key for the // certificate_verify message later. try main_cert_pub_key.init(subject.pub_key_algo, subject.pubKey()); } else { try prev_cert.verify(subject, now_sec); } switch (options.ca) { .no_verification => { handshake_state = .trust_chain_established; break :cert; }, .self_signed => { try subject.verify(subject, now_sec); handshake_state = .trust_chain_established; break :cert; }, .bundle => |ca_bundle| if (ca_bundle.verify(subject, now_sec)) |_| { handshake_state = .trust_chain_established; break :cert; } else |err| switch (err) { error.CertificateIssuerNotFound => {}, else => |e| return e, }, } prev_cert = subject; cert_index += 1; } cert_buf_index += 1; }, .server_key_exchange => { if (tls_version != .tls_1_2) return error.TlsUnexpectedMessage; if (cipher_state != .cleartext) return error.TlsUnexpectedMessage; switch (handshake_state) { .trust_chain_established => {}, .certificate => return error.TlsCertificateNotVerified, else => return error.TlsUnexpectedMessage, } switch (handshake_cipher) { inline else => |*p| p.transcript_hash.update(wrapped_handshake), } try hsd.ensure(1 + 2 + 1); const curve_type = hsd.decode(u8); if (curve_type != 0x03) return error.TlsIllegalParameter; // named_curve const named_group = hsd.decode(tls.NamedGroup); const key_size = hsd.decode(u8); try hsd.ensure(key_size); const server_pub_key = hsd.slice(key_size); try main_cert_pub_key.verifySignature(&hsd, &.{ &client_hello_rand, &server_hello_rand, hsd.buf[0..hsd.idx] }); try key_share.exchange(named_group, server_pub_key); handshake_state = .server_hello_done; }, .server_hello_done => { if (tls_version != .tls_1_2) return error.TlsUnexpectedMessage; if (cipher_state != .cleartext) return error.TlsUnexpectedMessage; if (handshake_state != .server_hello_done) return error.TlsUnexpectedMessage; const client_key_exchange_msg = .{@intFromEnum(tls.ContentType.handshake)} ++ int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++ array(u16, u8, .{@intFromEnum(tls.HandshakeType.client_key_exchange)} ++ array(u24, u8, array(u8, u8, key_share.secp256r1_kp.public_key.toUncompressedSec1()))); const client_change_cipher_spec_msg = .{@intFromEnum(tls.ContentType.change_cipher_spec)} ++ int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++ array(u16, tls.ChangeCipherSpecType, .{.change_cipher_spec}); const pre_master_secret = key_share.getSharedSecret().?; switch (handshake_cipher) { inline else => |*p| { const P = @TypeOf(p.*).A; p.transcript_hash.update(wrapped_handshake); p.transcript_hash.update(client_key_exchange_msg[tls.record_header_len..]); const master_secret = hmacExpandLabel(P.Hmac, pre_master_secret, &.{ "master secret", &client_hello_rand, &server_hello_rand, }, 48); if (options.ssl_key_log_file) |key_log_file| logSecrets(key_log_file, .{ .client_random = &client_hello_rand, }, .{ .CLIENT_RANDOM = &master_secret, }); const key_block = hmacExpandLabel( P.Hmac, &master_secret, &.{ "key expansion", &server_hello_rand, &client_hello_rand }, @sizeOf(P.Tls_1_2), ); const client_verify_cleartext = .{@intFromEnum(tls.HandshakeType.finished)} ++ array(u24, u8, hmacExpandLabel( P.Hmac, &master_secret, &.{ "client finished", &p.transcript_hash.peek() }, P.verify_data_length, )); p.transcript_hash.update(&client_verify_cleartext); p.version = .{ .tls_1_2 = .{ .expected_server_verify_data = hmacExpandLabel( P.Hmac, &master_secret, &.{ "server finished", &p.transcript_hash.finalResult() }, P.verify_data_length, ), .app_cipher = std.mem.bytesToValue(P.Tls_1_2, &key_block), } }; const pv = &p.version.tls_1_2; const nonce: [P.AEAD.nonce_length]u8 = nonce: { const V = @Vector(P.AEAD.nonce_length, u8); const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8); const operand: V = pad ++ @as([8]u8, @bitCast(big(write_seq))); break :nonce @as(V, pv.app_cipher.client_write_IV ++ pv.app_cipher.client_salt) ^ operand; }; var client_verify_msg = .{@intFromEnum(tls.ContentType.handshake)} ++ int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++ array(u16, u8, nonce[P.fixed_iv_length..].* ++ @as([client_verify_cleartext.len + P.mac_length]u8, undefined)); P.AEAD.encrypt( client_verify_msg[client_verify_msg.len - P.mac_length - client_verify_cleartext.len ..][0..client_verify_cleartext.len], client_verify_msg[client_verify_msg.len - P.mac_length ..][0..P.mac_length], &client_verify_cleartext, std.mem.toBytes(big(write_seq)) ++ client_verify_msg[0 .. 1 + 2] ++ int(u16, client_verify_cleartext.len), nonce, pv.app_cipher.client_write_key, ); const all_msgs = client_key_exchange_msg ++ client_change_cipher_spec_msg ++ client_verify_msg; var all_msgs_vec = [_]std.posix.iovec_const{ .{ .base = &all_msgs, .len = all_msgs.len }, }; try stream.writevAll(&all_msgs_vec); }, } write_seq += 1; pending_cipher_state = .application; handshake_state = .finished; }, .certificate_verify => { if (tls_version != .tls_1_3) return error.TlsUnexpectedMessage; if (cipher_state != .handshake) return error.TlsUnexpectedMessage; switch (handshake_state) { .trust_chain_established => {}, .certificate => return error.TlsCertificateNotVerified, else => return error.TlsUnexpectedMessage, } switch (handshake_cipher) { inline else => |*p| { try main_cert_pub_key.verifySignature(&hsd, &.{ " " ** 64 ++ "TLS 1.3, server CertificateVerify\x00", &p.transcript_hash.peek(), }); p.transcript_hash.update(wrapped_handshake); }, } handshake_state = .finished; }, .finished => { if (cipher_state == .cleartext) return error.TlsUnexpectedMessage; if (handshake_state != .finished) return error.TlsUnexpectedMessage; // This message is to trick buggy proxies into behaving correctly. const client_change_cipher_spec_msg = .{@intFromEnum(tls.ContentType.change_cipher_spec)} ++ int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++ array(u16, tls.ChangeCipherSpecType, .{.change_cipher_spec}); const app_cipher = app_cipher: switch (handshake_cipher) { inline else => |*p, tag| switch (tls_version) { .tls_1_3 => { const pv = &p.version.tls_1_3; const P = @TypeOf(p.*).A; try hsd.ensure(P.Hmac.mac_length); const finished_digest = p.transcript_hash.peek(); p.transcript_hash.update(wrapped_handshake); const expected_server_verify_data = tls.hmac(P.Hmac, &finished_digest, pv.server_finished_key); if (!std.crypto.timing_safe.eql([P.Hmac.mac_length]u8, expected_server_verify_data, hsd.array(P.Hmac.mac_length).*)) return error.TlsDecryptError; const handshake_hash = p.transcript_hash.finalResult(); const verify_data = tls.hmac(P.Hmac, &handshake_hash, pv.client_finished_key); const out_cleartext = .{@intFromEnum(tls.HandshakeType.finished)} ++ array(u24, u8, verify_data) ++ .{@intFromEnum(tls.ContentType.handshake)}; const wrapped_len = out_cleartext.len + P.AEAD.tag_length; var finished_msg = .{@intFromEnum(tls.ContentType.application_data)} ++ int(u16, @intFromEnum(tls.ProtocolVersion.tls_1_2)) ++ array(u16, u8, @as([wrapped_len]u8, undefined)); const ad = finished_msg[0..tls.record_header_len]; const ciphertext = finished_msg[tls.record_header_len..][0..out_cleartext.len]; const auth_tag = finished_msg[finished_msg.len - P.AEAD.tag_length ..]; const nonce = pv.client_handshake_iv; P.AEAD.encrypt(ciphertext, auth_tag, &out_cleartext, ad, nonce, pv.client_handshake_key); const all_msgs = client_change_cipher_spec_msg ++ finished_msg; var all_msgs_vec = [_]std.posix.iovec_const{ .{ .base = &all_msgs, .len = all_msgs.len }, }; try stream.writevAll(&all_msgs_vec); const client_secret = hkdfExpandLabel(P.Hkdf, pv.master_secret, "c ap traffic", &handshake_hash, P.Hash.digest_length); const server_secret = hkdfExpandLabel(P.Hkdf, pv.master_secret, "s ap traffic", &handshake_hash, P.Hash.digest_length); if (options.ssl_key_log_file) |key_log_file| logSecrets(key_log_file, .{ .counter = key_seq, .client_random = &client_hello_rand, }, .{ .SERVER_TRAFFIC_SECRET = &server_secret, .CLIENT_TRAFFIC_SECRET = &client_secret, }); key_seq += 1; break :app_cipher @unionInit(tls.ApplicationCipher, @tagName(tag), .{ .tls_1_3 = .{ .client_secret = client_secret, .server_secret = server_secret, .client_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length), .server_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length), .client_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length), .server_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length), } }); }, .tls_1_2 => { const pv = &p.version.tls_1_2; const P = @TypeOf(p.*).A; try hsd.ensure(P.verify_data_length); if (!std.crypto.timing_safe.eql([P.verify_data_length]u8, pv.expected_server_verify_data, hsd.array(P.verify_data_length).*)) return error.TlsDecryptError; break :app_cipher @unionInit(tls.ApplicationCipher, @tagName(tag), .{ .tls_1_2 = pv.app_cipher }); }, else => unreachable, }, }; const leftover = d.rest(); var client: Client = .{ .tls_version = tls_version, .read_seq = switch (tls_version) { .tls_1_3 => 0, .tls_1_2 => read_seq, else => unreachable, }, .write_seq = switch (tls_version) { .tls_1_3 => 0, .tls_1_2 => write_seq, else => unreachable, }, .partial_cleartext_idx = 0, .partial_ciphertext_idx = 0, .partial_ciphertext_end = @intCast(leftover.len), .received_close_notify = false, .allow_truncation_attacks = false, .application_cipher = app_cipher, .partially_read_buffer = undefined, .ssl_key_log = if (options.ssl_key_log_file) |key_log_file| .{ .client_key_seq = key_seq, .server_key_seq = key_seq, .client_random = client_hello_rand, .file = key_log_file, } else null, }; @memcpy(client.partially_read_buffer[0..leftover.len], leftover); return client; }, else => return error.TlsUnexpectedMessage, } if (ctd.eof()) break; cleartext_fragment_start = ctd.idx; }, else => return error.TlsUnexpectedMessage, } cleartext_fragment_start = 0; cleartext_fragment_end = 0; } }